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ABSTRACT
Numerical integrations of the closely packed inner Uranian satellite system show that variations
in semimajor axes can take place simultaneously between three or four consecutive satellites.
We find that the three-body Laplace angle values are distributed unevenly and have histograms
showing structure, if the angle is associated with a resonant chain, with both pairs of bodies near
first-order two-body resonances. Estimated three-body resonance libration frequencies can be
only an order of magnitude lower than those of first-order resonances. Their strength arises from
a small divisor from the distance to the first-order resonances and insensitivity to eccentricity,
which make up for their dependence on moon mass. Three-body resonances associated with
low-integer Laplace angles can also be comparatively strong due to the many multiples of
the angle contributed from Fourier components of the interaction terms. We attribute small
coupled variations in semimajor axis, seen throughout the simulation, to ubiquitous and weak
three-body resonant couplings. We show that a system with two pairs of bodies in first-order
mean-motion resonance can be transformed to resemble the well-studied periodically forced
pendulum with the frequency of a Laplace angle serving as a perturbation frequency. We
identify trios of bodies and overlapping pairs of two-body resonances in each trio that have
particularly short estimated Lyapunov time-scales.
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1 IN T RO D U C T I O N

Uranus has the most densely packed system of low-mass satellites
in the Solar system, having 13 low-mass inner moons with semi-
major axes between a = 49 752 and 97 736 km or 1.9–3.8 Uranian
radii (Smith et al. 1986; Karkoschka 2001; Showalter & Lissauer
2006). The satellites are named after characters from Shakespeare’s
plays and in order of increasing semimajor axis are Cordelia, Ophe-
lia, Bianca, Cressida, Desdemona, Juliet, Portia, Rosalind, Cupid,
Belinda, Perdita, Puck and Mab. External to these moons, Uranus
has five larger classical moons (Miranda, Ariel, Umbriel, Titania
and Oberon) and a number of more distant irregular satellites.

Signatures of gravitational instability were first revealed in long-
term numerical N-body integrations by Duncan & Lissauer (1997),
who predicted collisions between Uranian satellites in only 4–
100 Myr. Observations by Voyager 2 and the Hubble Space Tele-
scope have shown that the orbits of the inner satellites are variable
on time-scales as short as two decades (Showalter & Lissauer 2006;
Showalter et al. 2008; Showalter, Dawson & French 2010). Recent
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numerical studies (Dawson, French & Showalter 2010; French &
Showalter 2012) suggest that the instability is due to multiple mean-
motion resonances between pairs of satellites. French & Showalter
(2012) predict that the pairs Cupid/Belinda or Cressida/Desdemona
have orbits that will cross within 103–107 yr, an astronomically
short time-scale.

Numerical studies of two orbiting bodies find that stable and un-
stable regimes are separated by sharp boundaries (e.g. Gladman
1993; Mudryk & Wu 2006; Mardling 2008; Mustill & Wyatt
2012; Deck, Payne & Holman 2013). In contrast, numerical studies
of closely packed planar orbiting systems describe stability with
power-law relations (Chambers, Wetherill & Boss 1996; Duncan
& Lissauer 1997; Smith & Lissauer 2009). Systems are integrated
until the orbit of one body crosses the orbit of another body and this
time, the crossing time-scale, depends on powers of the mass and
the initial separation of the orbits (Chambers et al. 1996; Duncan
& Lissauer 1997; Smith & Lissauer 2009). The stability boundary
in three-body systems is attributed to overlap resonances involv-
ing two bodies (Wisdom 1980; Culter 2005; Mudryk & Wu 2006;
Quillen & Faber 2006; Mardling 2008; Mustill & Wyatt 2012; Deck
et al. 2013). In contrast, Quillen (2011) proposed that the power-law
relations in multiple-body systems were due to resonance overlap
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Table 1. Initial integration parameters.

Satellite a (km) e m n(Hz) ω/n

Cordelia 49 751.8 0.000 24 4.47e-10 2.1706e-04 1.40e-03
Ophelia 53 763.7 0.010 02 5.87e-10 1.9320e-04 1.20e-03
Bianca 59 165.7 0.000 96 9.50e-10 1.6734e-04 9.87e-04
Cressida 61 766.8 0.000 35 3.33e-09 1.5687e-04 9.05e-04
Desdemona 62 658.3 0.000 23 2.07e-09 1.5354e-04 8.80e-04
Juliet 64 358.3 0.000 74 7.18e-09 1.4749e-04 8.34e-04
Portia 66 097.4 0.000 17 1.66e-08 1.4170e-04 7.90e-04
Rosalind 69 927.0 0.000 33 2.25e-09 1.3022e-04 7.06e-04
Cupid 74 393.1 0.001 70 3.52e-11 1.1867e-04 6.23e-04
Belinda 75 255.8 0.000 27 4.40e-09 1.1663e-04 6.09e-04
Perdita 76 417.1 0.003 51 1.06e-10 1.1398e-04 5.91e-04
Puck 86 004.7 0.000 09 2.56e-08 9.5457e-05 4.66e-04
Mab 97 736.3 0.002 46 8.34e-11 7.8792e-05 3.61e-04

The semimajor axis, a (in km), and eccentricity, e, are initial geometrical
orbital elements for the numerical integration studied here, and presented and
described by French & Showalter (2012). The ratio of the mass of the moon
to the planet is given as m. Masses are based on the observed radii assuming a
density of 1 g cm−3, and are consistent with those listed in the middle column
of table 1 of French & Showalter (2012). Mean motions, n, are in units of Hz.
The unitless ω/n is the ratio of precession rate to mean motion.

of multiple weak three-body resonances and the strong sensitivity
of these three-body resonance strengths to masses and interbody
separations.

In this study, we probe in detail one of the numerical integrations
of the Uranian satellite system presented by French & Showalter
(2012), focusing on resonant processes responsible for instability
in multiple-body systems. In Section 2, we describe the numerical
integration and we compute estimates for boundaries of stability.
In Section 4, we construct a Hamiltonian model for the dynamics
of a coplanar, low-mass multiple-satellite or -planet system using
a low-eccentricity expansion. In Section 5, we estimate the libra-
tion frequencies of the strong two-body first-order resonances in
the Uranian satellite system. In Section 6, we search for three-
body resonances between bodies. The strengths of three-body reso-
nances that are near two-body first-order resonances are computed in
Section 7.1 and a time-scale for chaotic evolution estimated for a
resonant chain consisting of pairs of bodies in mean-motion reso-
nance in Section 7.3. In Section 7.4, we estimate the strength of
three-body resonances that have Laplace angles with low indices.
A summary and discussion follows in Section 8.

2 TH E N U M E R I C A L I N T E G R AT I O N A N D
O B S E RV E D R E S O NA N C E S

The numerical integration we use in this study is one of those pre-
sented and described in detail by French & Showalter (2012). This
simulation integrates the 13 inner moons (from Cordelia through
Mab) in the Uranian satellite system using the SWIFT software
package.1 The adopted planet radius is RU = 26 200 km (as by
Duncan & Lissauer 1997), the quadrupole and octupole grav-
itational moments for Uranus are J2 = 3.34343 × 10−3 and
J4 = −2.885 × 10−5 (as by French et al. 1991), and the mass
for Uranus is GMU = 5793 965.663 939 km3 s−2 (following French

1 SWIFT is a Solar system integration software package available
at http://www.boulder.swri.edu/hal/swift.html. Our simulation uses the
RMVS3 Regularized Mixed Variable Symplectic integrator (Levison &
Duncan 1994).

& Showalter 2012). The integrations do not include the five classi-
cal moons (Miranda, Ariel, Umbria, Titania and Oberon) as they do
not influence the stability of the inner moons (Duncan & Lissauer
1997; French & Showalter 2012).

The masses of the inner moons that we adopt, and specifying the
integration amongst those presented by French and Showalter, are
those given in the middle column of table 1 of French & Showalter
(2012). They are estimated from the observed moon radii assuming
a density of 1.0 g cm−3. Initial conditions for the numerical inte-
gration in the form of a state vector (position and velocity) for each
moon and dependent on the assumed moon masses were determined
through integration and iterative orbital fitting and are consistent
with observations for the first 24 years over which astrometry was
available (French & Showalter 2012).

Using the state vectors output by the integrations, we com-
pute the geometric orbital elements of Borderies-Rappaport &
Longaretti (1994), as implemented in closed-form solution by
Renner & Sicardy (2006), because they are not subject to the
short-term oscillations present in the osculating elements caused
by Uranus’s oblateness. For each moon, initial semimajor axis, a,
and eccentricity, e, are listed in Table 1, along with mean motion, n,
secular precession frequency, ω, and the ratio of the moon to planet
mass, m.

The integration output contains state vectors for the 13 inner
satellites at times separated by 107 s and the integration is t = 3.6
× 1012 s long (1.2 × 105 yr). We focus on the first part of the
integration (t < 1012 s), when the variations in the bodies have
not deviated significantly from their initial semimajor axes and
eccentricities, and before Cupid and Belinda enter a regime of first-
order resonance overlap, jumping from resonance to resonance (as
illustrated by French & Showalter 2012, see their figs 2 and 3). To
average over short time-scale variations in the orbital elements, we
computed median values of the semimajor axes and eccentricities
in time intervals 109 s long (and consisting of 100 recorded states
for this integration). These are shown to t = 1012 s in Fig. 1. The
semimajor axes as a function of time are plotted as a unitless ratio
(a − a0)/a0 × 105 where a0 is the initial semimajor axis and the
eccentricities are shown multiplied by 103.
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Resonant chains and three-body resonances 3961

Figure 1. Semimajor axes and eccentricities of the inner Uranian moons during the first part of the numerical integration. Not all moons are plotted; see
Section 2. Plotted as blue lines and with the y-axis on the left are deviations (a − a0)/a0 × 105, where a is the semimajor axis and a0 is its initial value for each
moon. The green lines show the eccentricities × 103 with the y-axis on the right. Scaling factors are written on the lower left and right. This figure illustrates
coupled variations in semimajor axis between two, three or four bodies. Anticorrelated variations in eccentricity and semimajor axis are evident for the lower
mass body when two bodies are in a first- or second-order mean-motion resonance.

Fig. 1 shows that variations in semimajor axes between bodies are
correlated. As pointed out by French & Showalter (2012), there are
a number of strong first-order mean-motion resonances. Cressida
and Desdemona are near the 43:44 mean-motion resonance, Bianca
and Cressida are near the 15:16 resonance, and Belinda and Perdita
are near the 43:44 resonance. Juliet and Portia are near the 49:51
second-order mean-motion resonance.

A p − 1: p first-order resonance between body i and body j is
described with one of the following resonant angles:

φpi = pλj + (1 − p) λi − �i

φpj = pλj + (1 − p) λi − �j, (1)

where p is an integer, λi, λj are the mean longitudes of bodies i and
j. The angles � i, � j are the longitudes of pericentre. These angles
move slowly when there is a commensurability between the mean
motions ni, nj,

pnj ≈ (p − 1)ni. (2)

The resonant argument φpi tends to be more important when the ith
body is the lighter body and φpj is more important if the jth body is
lighter.

In comparing semimajor axis variations with eccentricity varia-
tions, we see that semimajor axis variations in two nearby bodies
can be inversely correlated and the eccentricity variations of the
lower mass body tend to be anticorrelated with its semimajor axis
variations. As we will review in Section 5, within the context of
a Hamiltonian model, when a single resonant argument is impor-
tant (that associated with φpi or φpj), conserved quantities relate
variations in the semimajor axes to the eccentricity of one of the
bodies.

Fig. 1 shows that at times there are simultaneous variations be-
tween three or four bodies. The semimajor axes of Cressida, Desde-
mona, Juliet and Portia often exhibit simultaneous variations with
Cressida and Desdemona moving in opposite directions, Juliet and
Portia moving in opposite directions and Desdemona and Juliet
moving in the same direction. The correlated variations in semima-
jor axes seen in Fig. 1 between more than one body are similar to the
variations exhibited by integrated closely spaced planetary systems
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(e.g. see fig. 3 of Quillen 2011) that were interpreted in terms of
coupling between consecutive bodies from three-body resonances.
We will investigate this possibility below.

Eccentricities, however, are less well correlated. Often two bod-
ies experience opposite or anticorrelated eccentricity variations. For
two bodies with similar masses, the two resonant arguments, φpi,
φpj, are of equal importance or strength. Cressida and Desdemona
have similar masses and so the 46:47 resonance causes anticor-
related eccentricity variations in the two moons. But rarely are
eccentricity variations simultaneous among three or more bodies.
This might be expected as the eccentricities of these satellites are
low (see Table 1), and so high-order (in eccentricity) terms and
secular terms in the expansion of the two-body interactions in the
Hamiltonian or the disturbing function are weak.

3 STA BILITY BOUNDARY ESTIMATES

Here, we expand on the predictions of stability estimated by French
& Showalter (2012) in their section 3.1. A seminal stability mea-
surement for a two-planet system is that by Gladman (1993). We
define a normalized distance between the semimajor axes of two
bodies with semimajor axes ai, aj as

� ≡ (aj − ai)/ai, (3)

and we assume ai < aj. Gladman’s numerical study showed that
a coplanar system with a central body and two close planets on
circular orbits is Hill stable (does not ever undergo close encounters)
as long as the initial separation � � �G with

�G ≡ 2.4(mi + mj )1/3. (4)

Here, mi and mj are the planet masses divided by that of the central
star.

Chambers et al. (1996) explored equal-mass and equally spaced
but multiple-planet planar systems finding that � � �C is required
for Hill stability with

�C ≡ 10RmH/ai (5)

and � computed between a consecutive pair of planets. Here, the
mutual Hill radius

RmH ≡
(

mi + mj

3

)1/3 (
ai + aj

2

)
. (6)

In the planar restricted three-body system, a low-mass object in
a nearly circular orbit near a planet in a circular orbit is likely to
experience close approaches with a planet when � � �W with

�W ≡ 1.5m2/7, (7)

where m is the mass ratio of the planet to the star. This relation is
known as the 2/7th law and the exponent is predicted by a first-
order mean-motion resonance overlap criterion (Wisdom 1980).
The coefficient predicted by Wisdom (1980) is 1.3, but numerical
studies suggest it could be as large as 2 (Chiang et al. 2009); here
we have adopted an intermediate value of 1.5. For a low-mass body
apsidally aligned with a low but non-zero eccentricity planet, the
2/7th law is unchanged for bodies with low initial free-eccentricity
(Quillen & Faber 2006); otherwise the chaotic zone boundary is
near

�e ≡ 1.8(me)1/5, (8)

where e is the low-mass body’s eccentricity (Culter 2005; Mustill
& Wyatt 2012). This relation is known as the 1/5th law.

Table 2. Stability estimates from pairs of moons.

Pair of Moons � �
�G

�
�C

�
�W

�
�e

Cordelia Ophelia 0.081 33.2 11.1 23.3 7.9
Ophelia Bianca 0.100 36.3 12.0 25.3 8.9
Bianca Cressida 0.044 11.3 3.8 7.8 4.9
Cressida Desdemona 0.014 3.4 1.2 2.5 2.0
Desdemona Juliet 0.027 5.4 1.8 3.8 2.7
Juliet Portia 0.027 3.9 1.3 3.0 2.3
Portia Rosalind 0.058 9.1 3.1 6.5 5.8
Rosalind Cupid 0.064 20.2 6.8 12.6 6.8
Cupid Belinda 0.012 2.9 1.0 1.9 1.1
Belinda Perdita 0.015 3.9 1.3 2.5 1.2
Perdita Puck 0.125 17.7 5.8 12.3 7.1
Puck Mab 0.136 19.3 6.2 13.4 8.3

Here � ≡ (ai+1 − ai)/ai gives the separation between consecutive
bodies i and i + 1. The fourth through seventh columns list � divided
by �G, �C, �W and �e, delimiting different stability estimates.
None of the values listed here imply that the system will experi-
ence close encounters, though the Cressida/Desdemona, Juliet/Portia,
Cupid/Belinda and Belinda/Perdita pairs have lowest ratios and so
are pairs of moons nearest to regions of instability.

For consecutive pairs of Uranian satellites, we compute these four
measures of Hill stability using initial state vectors for each body
as described in Section 2 and listed in Table 1. The 2/7th and 1/5th
laws are derived for a massless body near a planet but here all the
bodies have mass. For each consecutive pair, we use the maximum
masses and eccentricities, computing the boundaries (in normalized
semimajor axis) as

�W = 1.5
[
max(mi, mj )

]2/7

�e = 1.8
[
max(mi, mj ) max(ei, ej )

]1/5
. (9)

In Section 5, we estimate the first-order resonance width for two
massive bodies and explain why we use the maximum mass in these
distances.

The four measures of stability, �G, �C, �W, and �e are
listed in Table 2. We expect instability if � divided by any of
these measures is less than 1. All measures of stability suggest
that the inner Uranian satellite system could be stable. However,
four pairs of consecutive satellites are near estimated boundaries
of instability. These pairs are Cressida/Desdemona, Juliet/Portia,
Cupid/Belinda and Belinda/Perdita. The stability boundaries sug-
gest that Cordelia and Ophelia are dynamically distant from the
remaining bodies as are Puck and Mab. Bianca through Rosalind
are close together as are Cupid through Perdita. Cordelia, Ophe-
lia, Puck and Mab are not plotted in Fig. 1 because they exhibited
minimal variations in orbital elements and lacked variations that
coincided with variations in the elements of the other moons.

An evenly spaced equal mass multiple-body system with
� = 1.2�C and a mass ratio of 10−9 has a crossing time-scale
of ∼1010 orbital periods. (from fig. 3 by Chambers et al. 1996).
Using an orbital period for Cressida of about 11 h this corresponds
to 107 yr, exceeding the crossing time-scales measured by French
& Showalter (2012) by an order of magnitude (see their table 3).
The measured crossing time-scale is shorter than that of the equally
spaced system because pairs of bodies (like Cressida and Desde-
mona or Cupid and Belinda) are in or near first-order mean-motion
resonances. They are near first-order resonances possibly because
these resonances fill a larger fraction of phase space volume when
two bodies have nearby orbits. (The measure �W is related to a
first-order resonance overlap condition). The closest two bodies
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are usually the first to cross orbits and so can set the numerically
measured crossing time-scale in a multiple-body system.

While there might be a sharp boundary between stable and un-
stable systems when there are only two planets, in a multiple-body
system the body masses and separations instead define an evolu-
tionary time-scale. With initial conditions consisting of orbits that
do not intersect (when projected on to the mid-plane), a proxy for
a stability time-scale is the time for one body to have an orbit that
crosses the orbit of another body. This crossing time-scale, mea-
sured numerically, has been fit by a function that is proportional to
a power of the masses and a power of the interplanetary separations
(Chambers et al. 1996; Duncan & Lissauer 1997; Smith & Lissauer
2009; French & Showalter 2012). The numerically measured ex-
ponents in these studies are not identical and may depend on the
number of bodies in the system, initial eccentricities (e.g. Zhou,
Lin & Sun 2007), the masses of the individual bodies when not all
masses are equal and their initial spacings if they are not equidistant.

Chaotic diffusion occurs in regions where resonances overlap
(e.g. Chirikov 1979; Wisdom 1980; Holman & Murray 1996;
Murray & Holman 1997; Murray, Holman & Potter 1998; Nesvorný
& Morbidelli 1998a; Quillen 2011; Giuppone, Morais & Correia
2013). The 2/7th law is derived by computing the location where
first-order mean-motion resonances between two bodies in nearly
circular orbits are sufficiently wide and close together that they
overlap (Wisdom 1980; Deck et al. 2013). In contrast, Gladman
(1993) accounted for the Hill stability boundary of two-planet sys-
tems with an estimate for a critical value for Hill stability, derived
by Marchal & Bozis (1982), at which bifurcation in phase space
topology occurs.

The average mass ratio of the moons from Bianca to Perdita is
μ ≈ 4 × 10−9 so the inner Uranian satellites are at the low-mass
end of the evenly spaced equal mass compact systems numerically
studied by Chambers et al. (1996). Using the fitted relation by Faber
& Quillen (2007) and mass ratio μ = 4 × 10−9 we estimate the
crossing time for equally spaced, equal mass multiple-body systems,
finding ∼107 orbital periods for a spacing of � = 0.014 (similar to
the closest pairs in the inner Uranian satellite system) and ∼1013

periods for � = 0.03 (approximately the mean spacing for moons
from Bianca to Perdita). In comparison, the crossing time-scale
numerically estimated by French & Showalter (2012) is ∼106 yr or
∼109 orbital periods (using an orbital period for Cressida of about
11 h). The closest pairs of bodies drastically lower the crossing
time-scale of the whole system with the closest two bodies usually
the first to cross orbits. But integration of a close pair of bodies in
isolation does not give a good estimate for the crossing time-scale
in the full multiple-body system.

Three-body mean-motion resonances among the mean motions
of an asteroid, Jupiter and Saturn are denser than ordinary mean-
motion resonances (Nesvorný & Morbidelli 1998a; Smirnov &
Shevchenko 2013). Overlap of three-body resonance multiplets is
an important source of chaos in the asteroid belt (Murray et al. 1998;
Nesvorný & Morbidelli 1998a). Recently, Quillen (2011) proposed
that chaotic evolution of planar, equal mass, closely spaced, plan-
etary systems is due to three-body resonances and estimated their
strengths using zeroth-order (in eccentricity) two-body interaction
terms. Crossing time-scales were estimated from the time for a sys-
tem to cross into a first-order mean-motion resonance between two
bodies. The sensitivity of the three-body resonances to interplane-
tary spacing and planet mass, and the associated diffusion caused by
them, could account for the range of crossing time-scales measured
numerically in compact multiple-planet systems. Laplace coeffi-
cients are exponentially sensitive to the Fourier integer coefficients

and this limits the maximum resonance index and so the number
of three-body resonances that can be important in any particular
system. Equivalently, the index is truncated at smaller integers for
more widely separated bodies, limiting the interactions between
non-consecutive bodies and accounting for the insensitivity of the
crossing time-scales to the number of bodies integrated (Quillen
2011).

Three-body resonance strengths were previously estimated by
Quillen (2011) assuming that pairs of bodies were distant from two-
body resonances. However, the Uranian system contains pairs of
moons in two-body resonance and intermittent resonant behaviour
is clearly seen in the numerical integrations by French & Showalter
(2012); by intermittent behaviour we mean that there are intervals of
time with slow smooth evolution separated by intervals with rapid
chaotic transitions. The proximity of pairs of bodies to the 2/7th and
1/5th law boundaries implies that even if the first-order resonances
are not overlapping, the system is strongly affected by them.

Dawson et al. (2010) previously suggested that the chaotic be-
haviour in the Uranian satellite system is due to this web of two-body
resonances. To improve upon the estimate of Quillen (2011), we take
into account the uneven spacing and different satellite masses when
estimating three-body resonance strengths, and we also take into
account the two-body mean-motion resonances.

4 A N E A R LY K E P L E R I A N H A M I LTO N I A N
M O D E L FO R C O P L A NA R M U LT I P L E - B O DY
DY NA M IC S

The inner moons of Uranus have low masses and eccentricities
(see Table 1), so a lower order expansion in satellite mass and
eccentricity should be sufficient to capture the complexity of the
dynamics. In this section, we use a Hamiltonian to describe multiple-
body interactions in such a nearly Keplerian setting. This approach
is similar to that previously done by Quillen (2011, but also see
Holman & Murray 1996; Deck et al. 2013). For simplicity, we
describe our formulation in terms of moons orbiting a central planet,
but without loss of generality the same formulation could be applied
to planets orbiting a central star.

The Hamiltonian for N non-interacting massive bodies orbiting a
planet (and so feeling gravity only from the central planet) can be
written as a sum of Keplerian terms

HKep =
N∑

j=1

− m3
j

2�2
j

, (10)

where mj is the mass of the jth body divided by the mass of planet,
Mp. We have ignored the motion of the planet and have put the
above Hamiltonian in units such that GMp = 1, where G is the
gravitational constant. Here, the Poincaré momentum

�j = mj
√

aj , (11)

where the semimajor axis of the jth body is aj and the associated
mean motion is nj. This Poincaré coordinate is conjugate to the
mean longitude, λj, of the jth body. The mean longitude, λj = Mj

+ � j, where Mj is the mean anomaly and � j is the longitude of
pericentre of the jth body and we have assumed a planar system and
so neglected the longitude of the ascending node. We also use the
Poincaré coordinate

	j = mj
√

aj

(
1 −

√
1 − e2

j

)
≈ mj

√
aj

e2
j

2
, (12)
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where ej is the jth body’s eccentricity. This coordinate is conjugate
to the angle γ j = −� j. We note that the Poincaré momenta retain a
factor of satellite’s mass. We ignore the vertical degree of freedom.

Interactions between pairs of bodies contribute to the Hamilto-
nian with a term

HInt =
∑
j>i

Wij , (13)

with

Wij = − mimj

|r i − rj | . (14)

Here, r i are the coordinates with respect to the central mass of the
ith body.

We choose to work in planet-centric coordinates. The momenta
conjugate to planet-centric coordinates are barycentric momenta
(see for example section 4 of Duncan, Levison & Lee 1998; Wis-
dom, Holman & Touma 1996 for heliocentric coordinates). The
N-body Hamiltonian gains an additional term Hdrift, arising from
the use of the planet-centric coordinate system;

Hdrift = 1

2Mp

∣∣∣∣∣
N∑

i=1

P i

∣∣∣∣∣
2

(15)

(following equation 3b of Duncan et al. 1998). Here, P i is the
barycentric momentum of the ith body and the sum is over all bodies
except the central body. Some attention must be taken to ensure that
the above expression has units consistent with GMp = 1. Expansion
of Hdrift gives the indirect terms in the expansion of the disturbing
function in the Lagrangian rather than Hamiltonian setting.

The central body could be an oblate planet. The difference be-
tween a point mass and an oblate mass can be described with
a perturbation term, Hob, that is the sum of the quadrupolar and
higher moments of the planet’s gravitational potential. Altogether
the Hamiltonian is

H = HKep + HInt + HDrift + Hob. (16)

An additional term could also be added to take into account post-
Newtonian corrections.

4.1 Some notation

We focus here on the regime of closely spaced, low-mass, planar
systems. We define the difference of mean motions

nij ≡ ni − nj ∼ 3

2
δij , (17)

when δij is small. Here δij is an interbody separation with

δij ≡ α−1
ij − 1 ≈ 1 − αij (18)

and the ratio of semimajor axes

αij ≡ ai/aj . (19)

We use a convention ai < aj < ak when three bodies are discussed so
that αij, αjk < 1. It is convenient to define differences of longitudes
of pericentre and mean longitudes

λij ≡ λi − λj

�ij ≡ �i − �j (20)

for bodies i, j.
Interaction strengths depend on Laplace coefficients,

b(q)
s (α) ≡ 1

π

∫ 2π

0

cos(qφ)dφ

(1 + α2 − 2α cos φ)s
, (21)

where q is an integer and s a positive half-integer. Laplace coeffi-
cients are the Fourier coefficients of twice the function f(φ) = (1
+ α2 − 2αcos φ)−s. As this function is locally analytic, the Fourier
coefficients decay rapidly at large q and the rate of decay is re-
lated to the width of analytical continuation in the complex plane
(Quillen 2011). When the two objects are closely spaced (αij ∼ 1),
the Laplace coefficient can be approximated

b
(p)
1/2(αij ) ∼ 0.5| log δij | exp(−pδij ) (22)

(see equation 10 and fig. 1 of Quillen 2011).
As long as the central body is much more massive than the other

bodies and the bodies are not undergoing close encounters, the terms
HInt, HDrift, Hob in the above Hamiltonian can be considered per-
turbations to the Keplerian Hamiltonian, HKep. Each of these terms
can be expanded in orders of eccentricity and in a Fourier series so
that each term contains a cosine of an angle or argument, φk, that
depends on a sum of the Poincaré angles, φk = k · (λ, γ ) where k
is a vector of integers and λ, γ are vectors of mean longitudes and
negative longitudes of pericentre for all bodies. The coefficients for
each argument are functions of the Poincaré momenta. Expansion
of the pair interaction terms is referred to as expansion of the dis-
turbing function and is outlined in chapter 6 of Murray & Dermott
(1999) and other texts. The expansion is also done in their chapter
8 using a Hamiltonian approach and in terms of Poincaré coordi-
nates for each body. A low-eccentricity expansion for Wij can be
put in Poincaré coordinates using the relations between semimajor
axis and eccentricity and Poincaré momenta �, �. We focus here
on low-eccentricity terms in the Hamiltonian or those that depend
on the momenta 	j to powers 1/2, 1, 3/2 or 2 but not higher. As
	j ∝ e2 this corresponds to power of eccentricity less than or equal
to 4. Terms in the expansion that do not depend on mean longitudes
are called secular terms. Secular terms are divided into two classes,
those that depend on longitudes of pericentre (� ) and those that
are independent of all Poincaré angles. Interactions between bodies
give both types of secular perturbation terms, whereas the oblate-
ness of the planet only affects the precession rates and so only gives
secular terms that are independent of � .

4.2 Secular perturbations due to an oblate planet

In this section, we estimate low-eccentricity secular terms in the
expansion of perturbation terms in the Hamiltonian arising from
the oblateness of the planet. Because of the low masses and ec-
centricities of the satellites, we neglect secular terms arising from
interactions between satellites.

A planet’s oblateness causes its gravitational potential to deviate
from that of a point source, inducing quadrupolar and higher terms
in the potential. The gravitational potential

V (r, α) ≈ −1

r

[
1 − J2

(
Rp

r

)2

P2(sin α)

−J4

(
Rp

r

)4

P4(sin α)

]
, (23)

where α is the latitude in a coordinate system aligned with the
planet’s rotation axis, Rp is the radius of the planet and we have
set GMp = 1. Here, J2, J4 are unitless zonal harmonic coeffi-
cients and Pn are Legendre polynomials of degree n. Writing r in
terms of geometric orbital elements (Borderies-Rappaport & Lon-
garetti 1994; Renner & Sicardy 2006) the above expression can be
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expanded in powers of the eccentricity (after averaging over the
mean anomaly),

Vo(a) + Vo2(a)e2 + Vo4(a)e4 (24)

in the equatorial plane. The potential perturbation component that
is second order in eccentricity (from equation 6.255 of Murray &
Dermott 1999) is

Vo2(a) ≈ −1

2
n2a2

[
3

2
J2

(
Rp

a

)2

− 9

8
J 2

2

(
Rp

ai

)4

− 15

4
J4

(
Rp

a

)4
]

(25)

(see equations 14 and 15 of Renner & Sicardy 2006 for expressions
for the mean motion and other frequencies). The J 2

2 term arises
from the dependence of the mean motion on the geometric orbital
element a.

The fourth-order coefficient, Vo4, only depends on the J2 com-
ponent of the potential. The potential perturbation at radius r and
latitude α = 0 due to this component is

− 1

r

J2

2

(
Rp

r

)2

. (26)

This expression is proportional to r−3 and we expand this with a low-
eccentricity expansion (using equation 2.83 of Murray & Dermott
1999). Averaging over the mean anomaly(a

r

)3
≈ 1 + 3

2
e2 + 15

8
e4. (27)

The term containing 3e2/2 gives the first term in equation (25), as
expected. The fourth-order term gives an additional perturbation
term to the Hamiltonian that is approximately

Vo4(a) = −1

2
n2a2 15

8
J2

(
Rp

a

)2

e4. (28)

The additional terms to the gravitational potential due to the
oblateness of the planet can be incorporated as a perturbation term,
Hob, to the Hamiltonian. These terms are equivalent to the potential
energy perturbation terms given above (equations 25 and 28) times
the planet mass. To fourth order in eccentricity, we gain perturba-
tions to the Hamiltonian

Hob ≈
∑

i

(
Aob,i	

2
i + Bob,i	i

)
(29)

in terms of the Poincaré coordinate 	i, with coefficients for each
orbiting body

Aob,i = −15

4

J2

mia
2
i

(
Rp

ai

)2

Bob,i = −ni

[
3

2
J2

(
Rp

ai

)2

− 9

8
J 2

2

(
Rp

ai

)4

− 15

4
J4

(
Rp

ai

)4
]
, (30)

where Aob,i comes from equation (28) and Bob,i comes from equation
(25). If desired, these coefficients can be put entirely in Poincaré
coordinates using ai = �2

i /mi . The sign for precession �̇i is correct
(and positive) as the angle γ i = −� i is conjugate to the momentum
	i.

Using equation (30) for Bob,i, it is useful to compute the difference
in precession rates for two nearby bodies

�̇ij ≡ �̇i − �̇j ≈ Bob,j − Bob,i ≈ 21

4
J2ni

(
Rp

ai

)2

δij , (31)

which is positive for aj > ai as the precession rate is faster for the
inner body than the outer body.

5 TWO -BODY FI RST-ORDER MEAN-MOTIO N
R E S O NA N C E S

In this section, we estimate the size scale of two-body mean-motion
resonances in the Uranian satellite system. When expanded to first
order in eccentricity the two-body interaction terms Wij have Fourier
components in the gravitational potential

∞∑
q=−∞

[
V i

ij,q cos(qλj + (1 − q)λi − �i)

+ V
j
ij,q cos(qλj + (1 − q)λi − �j )

]
, (32)

where

V i
ij,q = −mimj

aj
eif27(αij , q) ≈ −mim

3
j

�2
j

(
2	i

�i

)1/2
f27(αij , q)

V
j
ij,q = −mimj

aj
ej f31(αij , q) ≈ −mim

3
j

�2
j

(
2	j

�j

)1/2
f31(αij , q) (33)

and coefficients

f27(α, q) ≡ 1

2
[−2q − αD] b

(q)
1/2(α)

f31(α, q) ≡ 1

2
[−1 + 2q + αD] b

(q−1)
1/2 (α), (34)

where D ≡ d
dα

(equation 6.107 of Murray & Dermott 1999; also
see tables B.4 and B.7).

The convention in Murray & Dermott (1999) is that q is the coeffi-
cient of λj. Terms are grouped so that at first order in eccentricities,
there is only one q for each resonant term and q → −q gives a
different resonance (q: q − 1 → q: q + 1).

Approximations to the Laplace coefficients for closely spaced
systems (equation 22; also see Quillen 2011) give

f27(α, q) ∼ −f31(α, q) ∼ − 1

4δ
e−qδ (35)

for 5 � q < δ−1. Here δ is the interbody separation with δ = α−1 −
1 ≈ 1 − α. We define arguments

φqi ≡ qλj + (1 − q)λi − �i

φqj ≡ qλj + (1 − q)λi − �j . (36)

When �ij ≈ π the two resonant terms would be in phase and have
the same sign. They effectively add and so give a stronger resonance
than when � ij ≈ 0. We have neglected secular terms from interac-
tions between bodies, such as one proportional to eiejcos � ij, that
could influence the separation of the two resonances and induce
eccentricity oscillations (see Malhotra et al. 1989 on the secular
evolution of the five classical Uranian moons). For the inner Ura-
nian satellites, we found that the energy in this secular term is one
to three orders of magnitude weaker than that of the first-order res-
onant terms; the secular terms are weak because they are second
order in eccentricity.

Taking a Hamiltonian that contains perturbation components cor-
responding to a single q and the Keplerian Hamiltonians for two
bodies,

Hq (�i, �j , 	i, 	j ; λi, λj , γi, γj ) = − m3
i

2�2
i

− m3
j

2�2
j

+ Bi	i

+ Bj	j + εi	
1/2
i cos φqi

+ εj	
1/2
j cos φqj , (37)
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with coefficients dependent only on semimajor axes (or �i, �j)

εi = V i
ij,q	

−1/2
i = −mim

3
j

�2
j

(
2

�i

)1/2

f27(αij , q)

= −m
1/2
i mj 21/2

aja
1/4
i

f27(αij , q)

εj = V
j
ij,q	

−1/2
j = −mim

3
j

�2
j

(
2

�j

)1/2

f31(αij , q)

= −mim
1/2
j 21/2

a
5/4
j

f31(αij , q). (38)

Coefficients are computed from equation (33). For closely spaced
systems and using equation (35)

εi ≈ m
1/2
i mj 21/2

aja
1/4
i

e−qδij

4δij

εj ≈ −mim
1/2
j 21/2

a
5/4
j

e−qδij

4δij

. (39)

For the inner Uranian moons the secular precession terms are
predominantly caused by the oblateness of the planet: Bi = Bob,i

(equation 30). In planetary systems, secular interaction terms usu-
ally set Bi, Bj.

We perform a canonical transformation using a generating func-
tion that is a function of new momenta (Ki, Kj, Ji, Jj) and old angles
(λi, λj, γ i, γ j) (recall that the canonical coordinate γ i = −� i),

F2(Ki,Kj , Ji, Jj ; λi, λj , γi, γj ) = Ki(qλj + (1 − q)λi − �i)

+Jiλi + Kj (qλj + (1 − q)λi

− �j ) + Jjλj (40)

giving us new momenta and their conjugate angles

Ji = �i − (1 − q)(	i + 	j ), λi

Jj = �j − q(	i + 	j ), λj

Ki = 	i, φqi = qλj + (1 − q)λi − �i

Kj = 	j , φqj = qλj + (1 − q)λi − �j .

(41)

The mean longitudes λi, λj are unchanged by the transformation.
Because Ki = 	i and we keep 	i as a momentum coordinate. Our
new Hamiltonian in terms of our new coordinates

K(	i, 	j , Ji, Jj ; φqi, φqj , λi, λj )

= −m3
i

2

[
(1 − q)(	i + 	j ) + Ji

]−2 − m3
j

2

[
q(	i + 	j ) + Jj

]−2

+ εi	
1/2
i cos φqi + εj	

1/2
j cos φqj + Bi	i + Bj	j . (42)

We assume that 	i, 	j are small and expand the first two terms in
the Hamiltonian (equation 37) to second order in 	i and 	j. Our
new Hamiltonian (in terms of our new coordinates and to second
order in 	i and 	j)

K(	i, 	j , Ji, Jj ; φqi, φqj , λi, λj ) ≈ − m3
i

2J 2
i

− m3
j

2J 2
j

+A

2

(
	i+	j

)2

+ bi	i+bj	j+εi	
1/2
i cos φqi

+ εj	
1/2
j cos φqj . (43)

The coefficients

A = −3

[
m3

i

J 4
i

(1 − q)2 + m3
j

J 4
j

q2

]

bi = m3
i

J 3
i

(1 − q) + m3
j

J 3
j

q + Bi

bj = m3
i

J 3
i

(1 − q) + m3
j

J 3
j

q + Bj . (44)

As the Hamiltonian does not depend on angles λi, λj the two
momenta Ji, Jj are conserved. This implies that variations in the
semimajor axis are anticorrelated on time-scales that are long com-
pared to the periods of φqi and φqj (as we saw in Fig. 1). If the
φqj resonance is weak then we can neglect variations in 	j and
vice versa if the φqi resonance is weak. The signs in the relations
for Ji, Jj in equation (41) imply that eccentricity variations are an-
ticorrelated with semimajor axis variations of the inner body and
correlated with semimajor axis variations in the outer body. Exam-
ination of Fig. 1, for example motions of Cressida and Desdemona,
illustrate that many of the correlated variations in semimajor axis
and eccentricity are consistent with perturbations from a first-order
mean-motion resonance.

As Ji, Jj are conserved, the new Hamiltonian can be considered
a function of only two momenta 	i, 	j and their associated angles
φqi, φqj.

K(	i, 	j ; φqi, φqj ) = +A

2

(
	i + 	j

)2 + bi	i + bj	j

+ εi	
1/2
i cos φqi + εj	

1/2
j cos φqj (45)

For small q	i and small q	j we can approximate the conserved
quantity Ji ∼ �i0, where �i0 is a reference or initial value, �i0 =
mi

√
ai0 where ai0 is a reference or initial value of the semimajor axis

for the ith body. We denote ni0 the mean motion for this semimajor
axis. Using these reference values

A = −3

[
(1 − q)2

mia
2
i0

+ q2

mja
2
j0

]

bi = ni0(1 − q) + nj0q + Bi

bj = ni0(1 − q) + nj0q + Bj . (46)

The dependence of εi, εj on satellite masses implies that the φqi

resonance with the inner body is strong primarily when the outer
satellite mass is large and vice versa for φqj. This dependence is
expected based on similar resonant arguments for asteroids in res-
onances with Jupiter (outer body is more massive) and Kuiper belt
objects in resonances with Neptune (inner body is more massive). It
may be convenient to compute a ratio of resonance strengths, με ,

με ≡ − εj

εi

= −α
1/4
ij

(
mi

mj

)1/2
f31(αij , q)

f27(αij , q)
, (47)

where the sign is chosen so that με > 0. For closely spaced systems
(αij → 1), the coefficient f27(α, q) ∼ −f31(α, q) (see equation 35)
and the ratio of strengths of the two terms

με ∼
√

mi

mj

. (48)

The coefficient or frequency bi determines the distance to the
φqi resonance and similarly for bj and the φqj resonance. The time
derivative of the angle φqi − φqj is

φ̇qi − φ̇qj = −�̇ij ≈ bi − bj = Bi − Bj , (49)
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The frequency bi − bj sets the distance between the φqi and φqj

resonances. Using equation (31) for closely spaced bodies near an
oblate planet

φ̇qi − φ̇qj ∼ 5.25J2

(
Rp

ai

)2

δij ni (50)

Using J2 for Uranus and a semimajor axis typical of the inner
Uranian moons we estimate

− �ij = φ̇qi − φ̇qj ∼ 0.1δij ni . (51)

As discussed from dimensional analysis (Henrard & Lemaı̂tre
1983; Quillen 2006) there are dominant time-scales in this Hamilto-
nian that set characteristic libration frequencies at low eccentricity

νi = |εi |2/3|A|1/3 and νj = |εj |2/3|A|1/3 (52)

depending upon which argument is chosen (applying equation 7 of
Quillen 2006). When the two bodies are near each other, equations
(47) and (52) imply that

νi

νj

∼
(

mj

mi

)1/3

. (53)

In the high-q limit and when two bodies are near each other, using
equation (46)

A ∼ −3q2

a2
i

(
1

mi

+ 1

mj

)
. (54)

Using equation (52) for ν i, ν j and equation (39) for εi, εj when the
bodies are near each other we estimate

νi ∼ m
1/3
j

(
mi + mj

)1/3
q2/3δ

−2/3
ij e−2/3qδij (55)

and ν j given by multiplying by a factor of the mass ratio to the
one-third power (equation 53). The square of these libration fre-
quencies ν i, ν j, approximately delineates the adiabatic limit for
resonance capture at low eccentricity (Quillen 2006). An initially
low-eccentricity system is unlikely to capture into resonance if drift-
ing (in bi or bj) at a rate exceeding the square of ν i or ν j. By summing
the frequencies ν i, ν j to estimate resonant width, setting this equal
to spacing between resonances, a 2/7 law can be derived in the
setting of two eccentric massive bodies, and confirming the similar
derivation by Deck et al. (2013). The sum of the two frequencies
νi + νj ∝∼ max(mi, mj )2/3, supporting the use of the maximum of
the two masses in equation (9).

The maximum or critical eccentricities ensuring resonant capture
in the adiabatic regime (and delineating the regime of low eccen-
tricity, Borderies & Goldreich 1984) can also be set dimensionally
(see equation 7 of Quillen 2006) with

	i,crit ≡
∣∣∣ εi

A

∣∣∣2/3
and 	j,crit ≡

∣∣∣ εj

A

∣∣∣2/3
(56)

Using the definition for the Poincaré coordinates 	i, 	j, these cor-
respond to critical eccentricities values

ei,crit ≡
∣∣∣ εi

A

∣∣∣1/3
m

−1/2
i a

−1/4
i

ej,crit ≡
∣∣∣ εj

A

∣∣∣1/3
m

−1/2
j a

−1/4
j . (57)

Using the conserved quantities Ji, Jj and definitions for the Poincaré
coordinates, semimajor axis variations have a typical size

δi = 2(q − 1)

mia
1/2
i

(
	i,crit + 	j,crit

)

δj = 2q

mja
1/2
j

(
	i,crit + 	j,crit

)
, (58)

where δi = �ai/ai and similarly for δj. From ν i, 	i, crit we can
construct a characteristic energy scale

εi ≡ νi	i,crit = |εi |	1/2
i = |εi |4/3|A|−1/3 (59)

and likewise for εj. Resonance strength is often discussed in terms
of this characteristic energy scale which is approximately the am-
plitude of the relevant argument in the Hamiltonian. A strong reso-
nance is one with a relatively (compared to other resonances) large
characteristic energy size scale and correspondingly a large libration
frequency and critical eccentricity.

The ratio of the critical eccentricities

ei,crit/ej,crit ∼ (mj/mi)
1/3 (60)

for closely spaced bodies. When ei � ei,crit then the resonant width
depends on the eccentricity or 	i with

νei ∼
√

|Aεi |	1/4
i and νej ∼ √|Aεj |	1/4

j , (61)

respectively, when ej � ej,crit. Using equations (46), (35), (38) and
(61), we can approximate for two nearby objects

νei ∼ q

√(
mi + mj

) ei

δij

νej ∼ q

√(
mi + mj

) ej

δij

. (62)

To be in the region where the φqi resonance is strong we require
that

|bi | �
{

νi

νei
for

ei � ei,crit

ei � ei,crit
(63)

and similarly using bj for the φqj resonance. The dividing line
depends on the critical eccentricity ensuring capture in the adia-
batic limit (ei, crit, ej, crit; as discussed from dimensional analysis by
Quillen 2006).

5.1 Two-body resonances between Uranian moons

In Table 3, we list computed properties of strong two-body first-
order mean-motion resonances in the inner Uranian satellite system.
We have computed characteristic libration frequencies for both res-
onance terms (that corresponding to φqi and that corresponding to
φqj) for the ith and jth body in a q − 1: q resonance and listed the
maximum libration frequency

νmax ≡ max(νi, νj , νei , νej ). (64)

Here libration frequencies ν i, ν j are computed using equation (52)
and νei, νej using equation (61). We use semimajor axes and ec-
centricities from the beginning of the integration to perform these
computations. We identify which resonant term (that associated
with φqi or φqj) is larger from the maximum libration frequency and
this is also listed in Table 3.

Libration frequencies for the strongest first-order mean-motion
resonances are of the order of 10−7 Hz corresponding to periods
of 108 s (a few years). By computing equation (62) from values
for eccentricity and mass ratio listed in Table 1 and intersatellite
separations in Table 3, and restoring units by multiplying by the
mean motion of the inner satellite (also listed in Table 1), we have
checked that the approximation for the libration frequency (using
equation 62) is within a factor of a few of the quantity more accu-
rately calculated using Laplace coefficients.
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Table 3. Properties of strong first-order two-body resonances.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
i j q-1:q δij φ νmax (Hz) νmax

ni

bm
νmax

bm
ni

em λolp με
εm

εmCD

Cressida Desdemona 46:47 0.014 φj 1.1e-07 6.9e-04 1.4 9.6e-04 0.89 0.065 1.28 1.00
Belinda Perdita 43:44 0.015 φj 2.1e-07 1.8e-03 0.1 1.3e-04 10.50 0.018 6.49 0.80
Cupid Belinda 57:58 0.012 φi 2.2e-07 1.8e-03 −2.4 −4.5e-03 5.51 0.013 0.09 −0.17
Desdemona Portia 12:13 0.055 φi 4.5e-08 3.0e-04 9.1 2.7e-03 0.29 0.508 0.36 −1.29
Bianca Cressida 15:16 0.044 φi 3.1e-08 1.8e-04 8.6 1.6e-03 2.37 0.748 0.55 −0.65
Rosalind Perdita 7:8 0.093 φj 1.2e-08 9.1e-05 −20.7 −1.9e-03 7.38 2.083 4.78 0.08
Desdemona Juliet 24:25 0.027 φj 7.6e-08 4.9e-04 −29.8 −1.5e-02 3.80 0.160 0.54 3.73
Cressida Juliet 16:17 0.042 φj 4.4e-08 2.8e-04 62.7 1.8e-02 2.56 0.429 0.69 3.96
Cupid Perdita 24:25 0.027 φj 1.6e-08 1.3e-04 −93.9 −1.2e-02 67.58 0.424 0.58 0.00
Bianca Desdemona 11:12 0.059 φi 1.7e-08 9.9e-05 −92.9 −9.2e-03 2.60 1.818 0.70 −0.30
Portia Rosalind 11:12 0.058 φj 4.0e-08 2.8e-04 −95.3 −2.7e-02 0.41 0.505 2.78 1.87
Portia Perdita 4:5 0.156 φj 1.6e-08 1.1e-04 −192.5 −2.1e-02 3.18 2.848 13.09 0.36
Rosalind Cupid 10:11 0.064 φj 1.4e-08 1.1e-04 −223.4 −2.3e-02 3.92 1.310 8.22 0.02
Portia Cupid 5:6 0.126 φj 1.5e-08 1.1e-04 −227.2 −2.4e-02 1.63 2.541 22.66 0.07
Juliet Cupid 4:5 0.156 φj 7.5e-09 5.1e-05 −440.5 −2.2e-02 2.03 6.548 14.97 0.03
Rosalind Belinda 9:10 0.076 φi 1.2e-08 9.0e-05 492.8 4.4e-02 0.67 1.785 0.74 −0.34
Portia Belinda 5:6 0.139 φj 1.4e-08 9.8e-05 634.4 6.2e-02 0.28 2.947 2.04 1.29
Belinda Perdita 42:43 0.015 φj 2.0e-07 1.7e-03 −13.0 −2.3e-02 10.33 0.018 6.49 0.80
Belinda Perdita 44:45 0.015 φj 2.1e-07 1.8e-03 12.7 2.3e-02 10.68 0.018 6.49 0.79
Cressida Desdemona 47:48 0.014 φj 1.1e-07 6.9e-04 32.1 2.2e-02 0.91 0.064 1.28 1.00
Cressida Desdemona 45:46 0.014 φj 1.1e-07 6.8e-04 −30.0 −2.0e-02 0.88 0.066 1.28 1.00
Desdemona Juliet 25:26 0.027 φj 7.8e-08 5.1e-04 48.4 2.5e-02 3.92 0.154 0.54 3.70
Desdemona Portia 11:12 0.055 φi 4.3e-08 2.8e-04 −264.0 −7.4e-02 0.28 0.534 0.36 −1.30
Bianca Cressida 14:15 0.044 φi 2.9e-08 1.7e-04 −351.0 −6.1e-02 2.25 0.796 0.54 −0.66
Cressida Juliet 15:16 0.042 φj 4.2e-08 2.7e-04 −157.5 −4.2e-02 2.45 0.455 0.69 4.00
Cupid Belinda 56:57 0.012 φi 2.2e-07 1.8e-03 −11.9 −2.2e-02 5.44 0.014 0.09 −0.17
Cupid Belinda 58:59 0.012 φi 2.2e-07 1.9e-03 6.8 1.3e-02 5.58 0.013 0.09 −0.17
Portia Rosalind 12:13 0.058 φj 4.2e-08 2.9e-04 185.1 5.4e-02 0.44 0.483 2.79 1.85
Juliet Portia 24:25 0.027 φi 1.2e-07 8.2e-04 −22.6 −1.9e-02 1.30 0.091 0.67 −28.60
Juliet Portia 25:26 0.027 φi 1.2e-07 8.4e-04 24.8 2.1e-02 1.34 0.089 0.67 −28.38
Juliet Portia 26:27 0.027 φi 1.3e-07 8.5e-04 70.3 6.0e-02 1.38 0.087 0.67 −28.14
Rosalind Belinda 8:9 0.076 φi 1.1e-08 8.4e-05 −715.2 −6.0e-02 0.62 1.907 0.74 −0.34
Desdemona Rosalind 6:7 0.116 φj 5.6e-09 3.6e-05 1758.1 6.4e-02 0.85 7.760 1.00 0.13

The properties of strong first-order mean-motion resonances in the Uranian satellite system. Columns: 1 and 2: satellite names corresponding
to bodies i and j. The resonant arguments are φqi = qλj + (1 − q)λi − � i and φqj = qλj + (1 − q)λi − � j. Column 3: the integers q − 1: q.
Column 4: the spacing between the two bodies δij computed using equation (18). Column 5: the dominant resonant argument (that with larger
libration frequency) is denoted as φi if the φqi angle is important or φj if the φqj angle is important. Column 6: the frequency of librations in
resonance, νmax, (equation 64) in units of Hz. This frequency is computed using equations (52), (61) and (38). Column 7: νmax divided by the
innermost body’s mean motion, ni. Column 8: the distance to resonance bm (equation 66) in units of νmax. When |bm/νmax| � 1 the system is
near resonance. Here the frequencies bi, bj are computed using equation (46) and bm, the distance to the dominant resonant argument. Column
9: the distance to resonance in units of the innermost body’s mean motion or the ratio bm/ni. Column 10: the ratio of initial eccentricity to
critical eccentricity for the dominant argument (see equation 65, and this is computed using equation 57). Column 11: the unitless overlap ratio,
λolp, (equation 70) describing the proximity of the φqi and φqj resonances. Column 12: the unitless parameter με , the ratio of φqi versus φqj

resonance strengths (see equation 47). Column 13: energy of the argument εm (equation 69) divided by that for the Cressida/Desdemona 46:47
resonance. The resonances have been divided into two groups. For each satellite pair, the top set lists only the nearest first-order resonance. The
bottom set includes more distant resonances.

In Table 3, we also list the ratio of eccentricity to critical eccen-
tricity for the stronger resonant subterm

em ≡
⎧⎨
⎩

ei

ei,crit

ej

ej,crit

for
max(νi, νei) ≥ max(νj , νej )

max(νi, νei) < max(νj , νej )
(65)

and these are computed using equation (57). Distance to resonance
is estimated with the frequency

bm ≡ min(|bi |, |bj |). (66)

When bm/νmax � 1 the pair of bodies is strongly influenced by
the resonance. It will be helpful later on to consider bm as a small
divisor when we discuss three-body resonances in Section 7.1.

The coefficients bi, bj were computed using equation (46) and
with precession rates calculated using equation (30) (and so lacking
contribution from secular satellite interactions). We use equation
(38) for εi, εj to compute quantities such as νmax and em.

To compare the strengths of the φqi and φqj resonant terms we
compute a ratio μm

μm ≡
{

μij

μ−1
ij

for
μij < 1
μij > 1

(67)

with

μij ≡ 	
1/2
j εj

	
1/2
i εj

=
(

νej

νei

)2

, (68)

corresponding to coefficients in the Hamiltonian, equation (45).
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Resonant chains and three-body resonances 3969

An energy for the dominant subterm

εm ≡
{

εi	
1/2
i

εj	
1/2
j

for
μij < 1
μij > 1

(69)

is listed in Table 3 divided by the energy for the dominant term
in the Cressida/Desdemona 46:47 resonance, denoted as εmCD. We
also compute the frequency ratio

λolp ≡
∣∣∣∣ �̇ij

νmax

∣∣∣∣ , (70)

which is a parameter describing the proximity of the two resonance
terms (Holman & Murray 1996; Murray & Holman 1997).

As can be seen from Table 3, and with the exception of resonances
involving Cupid, at the beginning of the integration the bodies tend
to be near but above the critical eccentricities for each resonance
term. Thus, usually νei > ν i and νej > ν j. Cupid has a comparatively
high eccentricity so em > 1 for the 57:58 resonance with Belinda
and the 24:25 resonance with Perdita.

Only for the Cupid/Belinda 57:58, Belinda/Perdita 43:44 and
Cressida/Desdemona 46:47 resonances is the system clearly in
the vicinity of resonance at the beginning of the integration with
bm � 1. In the rightmost column in Table 3 we compute this energy
divided by that for the Cressida/Desdemona 46:47 resonance, al-
lowing a comparison of the relative energies of the resonant terms.
The energy in the Juliet/Portia resonances is high because of the
comparatively large masses of Juliet and Portia.

5.2 Intermittency in resonant angle histograms

Near a resonance, the resonant angle moves slowly or freezes. The
distribution of angle values measured in a time interval peaks at the
frozen angle and is not flat. Examination of histograms of a resonant
angle during different time intervals is a way to search for resonant
interaction in a numerical integration. For example, a pair of bodies
with a resonant angle librating about π has an angle histogram that
is strongly peaked at π. If the pair of bodies is distant from the
resonance, then the angle circulates and the histogram would be
flat. Near a resonance separatrix, the histogram can peak at π or 0
even if the angle circulates.

For each 500 data outputs (each spanning a time interval of 5 ×
109 s long) in the numerical integration, we used orbital elements,
computed from the state vectors, to create histograms of the angles
φqi and φqj. These angles, modulo 2π, are binned in 18 angular bins.
The result is a two-dimensional histogram, with time intervals along
one axis and angle along the other. Each bin counts the number of
times the angle was in that angle bin during the time interval. We
note that sometimes the sampling or data output period introduces
structure into the histograms when the distribution should be flat.
This happens when the angle plotted happens to have a period that is
approximately an integer ratio of the sampling period. When there
are variations in the period of the angle, then such aliasing is rarer.
Unfortunately, the integration output rate was not chosen with the
creation of angle histograms in mind so we cannot decrease the
output period or resample it.

The structure-exhibiting resonant angle histograms for first-order
mean-motion resonance angles involving two bodies are shown in
Fig. 2. In Fig. 2, when the colour is black, the system spent no time
with the resonant angle in that particular bin. If the colour is uni-
formly blue, then the angle was evenly distributed and was probably
circulating. When the angle remains fixed or librates about a partic-
ular value there is a peak in the histogram at this y-axis value. The

closest resonances, Cupid/Belinda 57:58, Belinda/Perdita 43:44 and
Cressida/Desdemona 46:47 (at the top of Table 3 and with proxim-
ity measured as having a low value of bm/νmax) have resonant angle
histograms with particularly strong structure. These pairs spend
more time with the resonant angle near 0 or π.

Even though Desdemona and Portia are not very near the 12:13
resonance (as seen from bm/νmax in Table 3), the resonant angle
12λDes − 13λPor + � Des tends to remain near 0 and 12λDes −
13λPor + � Por spends more time near π. Similarly, 15λBia − 16λCres

+ � Cres spends more time near π than 0.
Intermittent behaviour is seen in the resonant angle histograms

of the 57:58 resonance of Cupid and Belinda, the 46:47 resonance
of Cressida and Desdemona and the 43:44 resonance of Belinda
and Perdita. The angle 57λCup − 58λBel − � Cup librates about 0 or
π, making transitions between the two states. Transitions between
libration states are coupled in the Cupid, Belinda and Perdita trio.
For example, when the angle 43λBel − 44λPer − � Per makes a
transition from π to 0 at t ∼ 8 × 1011 s the angle 57λCup − 58λBel

− � Bel makes a transition from 0 to π. In contrast, Cressida and
Desdemona’s resonant angles undergo a variety of transitions but
none of the other two-body angles in Fig. 2 make transitions at the
same time.

We could view the transitions of the resonant angles as an ex-
ample of ‘Hamiltonian intermittency’ (e.g. Shevchenko 2010). As
discussed by Shevchenko (2010), Hamiltonian intermittency is at-
tributed to oscillations in the location of a separatrix or sticky
orbits (cantori) in the boundary of a chaotic layer. Perhaps both
mechanisms are possible here. To investigate the source of chaotic
behaviour and associated intermittency we consider two possible
sources of chaotic behaviour. First, we consider the role of the two
resonant terms in an individual first-order mean-motion resonance,
following Holman & Murray (1996) who estimated Lyapunov time-
scales in mean-motion resonances in the asteroid belt based on
overlap between resonant subterms. The Lyapunov exponents char-
acterize the mean rate of exponential divergence of trajectories close
to each other in the phase space. By Lyapunov time-scale we mean
the inverse of the maximum Lyapunov exponent. Secondly, in Sec-
tion 7 we will discuss the Lyapunov time-scale in resonant chains,
when there are pairs of first-order mean motions resonances in trios
of bodies.

5.3 Resonance overlap between subterms in individual
first-order resonances

If we can compare our Hamiltonian model to the well-studied non-
linear driven pendulum, then we can estimate the Lyapunov time-
scale in it. Because eccentricities are usually above or near the
critical values we can assume that the system oscillates about a mean
eccentricity value. In this case, the coefficients of each resonant term
are not strongly dependent upon the variations in the momenta 	i,
	j. Using the strength ratio μm, equation (45) can be approximately
transformed (via canonical transformation) to

K(J , φ; 	,�ij ) ≈ A

2
J 2 + brJ + �	

+ εm

[
cos φ + μm cos(φ + �ij )

]
, (71)

where φ is the angle φi or φj for the strongest term and is conjugate to
J. The angle � ij is conjugate to 	 and 	 is either 	i or 	j depending
upon which resonant subterm is dominant; likewise the coefficient br

is either bi or bj. Here � is a perturbation frequency also representing
the distance between the two resonances; � ∼ ±�̇ij . The frequency
of small oscillations for the dominant resonance νmax = √

Aεm.
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3970 A. C. Quillen and R. S. French

Figure 2. Histograms of resonant angles associated with first-order mean-motion resonances between two moons. The particular resonant angle plotted is
labelled in each panel. When the colour is black, the system spent no time with the resonant angle at that particular y-axis value. When the colour is uniformly
blue, the angle was evenly distributed and the angle was circulating.

The Hamiltonian can be recognized as a periodically per-
turbed pendulum (Chirikov 1979; Shevchenko & Kouprianov 2002;
Shevchenko 2014) and our description is equivalent to the forced-
pendulum model for chaos in mean-motion resonances in the aster-
oid belt by Holman & Murray (1996) and Murray & Holman (1997).
The periodically perturbed pendulum exhibits chaotic behaviour in
the separatrix of the primary resonance. Following Chirikov (1979)
and Shevchenko & Kouprianov (2002), a unitless overlap param-
eter, λolp, can be constructed from the perturbation frequency and
frequency of small oscillations of the dominant resonance

λolp = �

νmax
= �̇ij

νmax
. (72)

This parameter affects the separatrix width and the Lyapunov
time-scale inside the separatrix (Chirikov 1979; Shevchenko &
Kouprianov 2002; Shevchenko 2004, 2014). Whereas in the as-
teroid belt the separation between the two resonant subterms arises
from secular interactions with giant planets, here the separation
arises from the oblateness of the planet.

We can use an approximation for the precession rate (equa-
tion 31) and resonance libration frequencies (equation 55) for a
closely spaced system to estimate

λolp ∼ 5.25 max(mi, mj )−2/3δ
7/3
ij j2

(
Rp

ai

)2

, (73)
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Resonant chains and three-body resonances 3971

where we have set q ∼ δ−1
ij for the nearest first-order mean-motion

resonance. The strong dependence on separation accounts for the
differences in λolp seen in Table 3.

Table 3 shows that the perturbation strengths of the subterm, μm,
are not small. For a particle in separatrix of the dominant reso-
nance, the perturbation causes an energy change, for each orbit, that
is about the size of the energy in the resonance itself. However,
inspection of Table 3 shows that the overlap ratio λolp � 0.1 for
most of the resonances. This puts them in the regime described as
adiabatic chaos by Shevchenko (2008). In this regime, the Lya-
punov time-scale for chaotic evolution is approximately the pertur-
bation period T = 2π/� (logarithmically increasing only at very
small λ, see equation 17 by Shevchenko 2008). In units of the res-
onance libration period the Lyapunov time-scale is approximately
inversely proportional to λ. As the resonance libration periods are
of the order of 1–10 yr (frequencies are listed in Table 3), and the
overlap parameters λolp � 0.1, the Lyapunov time-scale would be
in the regime of 10–100 yr. The overlap of these resonant subterms
might account for some of the intermittency present in the resonant
angles during the integration. We note that the separatrix width, in
units of energy, depends on λ2

olp and is small when λolp < 1 (the W
parameter ∝ λ2

olp; equation 5 of Shevchenko (2008), and the sepa-
ratrix width is equal to this energy, see also fig. 1 of Shevchenko
2004). Consequently, the volume of phase space in which chaotic
diffusion takes place is small in the adiabatic regime. Only for the
more widely spaced bodies is the overlap parameter in a regime
giving a comparatively short Lyapunov time-scale and a significant
width in the chaotic region associated with the resonance separatrix.

Can we learn anything from considering what happens near
a spherical planet or with J2 = 0? Equation (73) implies that
λolp → 0 in this limit and we would expect integrable mean-motion
resonances (and so no chaotic behaviour). In contrast, Duncan &
Lissauer (1997) found that an integration with J2 = 0 exhibited
more instability and had a shorter crossing time-scale, opposite to
what we expect. We have neglected the role of secular interaction
terms between bodies, and when J2 → 0 perhaps secular interactions
between distant moons become more important.

The overlap of subterms in individual mean-motion resonances,
particularly important for pairs of bodies that are not the nearest
ones, could account for transitions of a single resonant angle from
a state near 0 to π and vice versa. However, this mechanism would
not account for coupled variations in angles in pairs of bodies, or
coupled variations in semimajor axis between more than two bodies.
Since numerical integrations have shown that integration of fewer
moons can increase the crossing time-scale (French & Showalter
2012), we are also interested in mechanisms involving additional
moons for the intermittency in the resonant angles.

6 T H R E E - B O DY I N T E R AC T I O N S

Overlap of three-body multiplets is a source of chaos in the asteroid
belt (Nesvorný & Morbidelli 1998a; Murray et al. 1998). Quillen
(2011) proposed that three-body resonances were responsible for
slow, chaotic diffusion in the semimajor axes of bodies in inte-
grated planar closely packed multiple-planet systems. Three-body
resonances in the Uranian satellite system may account for some of
the coupled variations we see between three or more bodies. To ex-
plore this possibility, we searched the inner Uranian satellite system
for strong three-body resonances. When a three-body resonance is
strong, the associated Laplace angle freezes or librates (Nesvorný
& Morbidelli 1998a,b; Smirnov & Shevchenko 2013). We search

for time periods when Laplace angles are slowly moving and then
discuss comparisons between histograms of resonant angles and
variations in orbital elements between trios of bodies.

6.1 Searching for nearby three-body resonances

The three-body resonances discussed by Quillen (2011) are spec-
ified by two integers p, q. The p:-(p+q):q resonance is associated
with a Laplace angle

θ = pλi − (p + q)λj + qλk (74)

that involves mean longitudes of three bodies i, j, k where we assume
that the semimajor axes ai < aj < ak. The Laplace angle is slowly
moving when the frequency

θ̇ ≈ pni − (p + q)nj + qnk ∼ 0 (75)

with ni, nj, nk the mean motions of the three bodies.
For trios of bodies, we searched for integers p, q that mini-

mized |θ̇ |. For the trios Cressida, Juliet and Portia and Cressida,
Desdemona and Portia we list three-body resonant angles, with
|θ̇ | < 6 × 10−7 Hz at some time in the interval t = 0–1012 s, in
Table 4, and we plot histograms of these resonant angles in Figs 3
and 4. We limited our search to p, q < 100 as Laplace coefficients
(and so resonant strengths) are truncated exponentially with pδij > 1
or qδjk > 1, with δij, δjk describing the distances between the moons
(Quillen 2011, and as shown in equation 22).

Gravitational interactions only involve two bodies, and it is only
via canonical transformation that we derive a Hamiltonian that con-
tains a three-body Laplace angle. Quillen (2011) estimated three-
body resonance strengths assuming that the dominant contribution
was from two zeroth-order (in eccentricity) perturbation terms,

Wij,p cos p(λi − λj ) + Wij,q cos q(λj − λk), (76)

Table 4. Potential three-body resonances.

Cres/Jul/Por Cres/Des/Por
p:-(p+q):q θ̇(Hz) p:-(p+q):q θ̇(Hz)

5:-13:8 6.0e-07 7:-9:2 −2.4e-07
8:-21:13 −1.2e-07 14:-18:4 −4.8e-07
13:-34:21 3.9e-07 25:-32:7 5.3e-07
16:-42:26 −2.3e-07 32:-41:9 2.0e-07
21:-55:34 1.9e-07 39:-50:11 −1.8e-10
24:-63:39 −3.5e-07 46:-59:13 −7.9e-11
29:-76:47 −5.4e-11 53:-68:15 −1.3e-07
32:-84:52 −4.7e-07 60:-77:17 −3.7e-07
34:-89:55 5.8e-07 64:-82:18 4.0e-07
37:-97:60 −4.0e-11 71:-91:20 7.5e-08
40:-105:65 −5.8e-07 78:-100:22 −3.6e-10
42:-110:68 3.8e-07 85:-109:24 8.9e-11
45:-118:73 −2.4e-10 92:-118:26 −1.6e-10
50:-131:81 1.8e-07 99:-127:28 −2.7e-08
53:-139:86 −4.7e-08
58:-152:94 −1.1e-10
61:-160:99 −1.6e-07

The first and third columns list p:-(p+q):q with p,
q < 100, such that the frequency θ̇ = pni − (p +
q)nj + qnk has |θ̇ | < 6 × 107 Hz at some time in
the integration with t < 1012 s. The second and
fourth columns list θ̇ in Hz. The three bodies are
Cressida, Juliet and Portia for the left two columns
and Cressida, Desdemona and Portia for the right
two columns. Histograms of the resonant angles are
shown in Figs 3 and 4.
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3972 A. C. Quillen and R. S. French

Figure 3. Histograms of resonant angles of nearby three-body resonances for Cressida, Juliet and Portia. The resonant angle plotted is labelled in each panel.

that are Fourier components of two-body interaction terms. A near-
identity canonical transformation gives a Hamiltonian in the vicinity
of three-body resonance lacking these two terms

H (�, λ) =
∑

l=i,j ,k

− m3
l

2�2
i

+ εpq cos(pλi − (p + q)λj + qλk). (77)

The coefficient εpq (�) is sensitive to divisors nij and njk that are the
difference in mean motions of the two bodies (see equation 23 for εpq

of Quillen 2011) and can be considered a second-order perturbation
(and depending on a higher power of moon mass) as it involves
a product of the coefficients Wij,p and Wjk,q. The dependence on
divisors nij and njk suggests that all the resonances listed in Table 4
should have similar strengths. However, we can see by comparing
the resonant angle histograms in Figs 3 and 4 that this is probably
not the case.

We first check to see if the resonant angles freeze only if the
three bodies are very near resonance. For the Cressida, Juliet and
Portia trio there is a time when the bodies are very near the 29:-
76:47 resonance (with |θ̇ | < 10−10 Hz, as listed in Table 4). Most
of the other resonances have minimum distance |θ̇ | ∼ 10−7 Hz.
Despite proximity to resonance, the 29:-76:47 resonant angle does
not show more structure than the other angles in Fig. 3. The Cressida,
Desdemona and Portia trio is near both the 39:-50:11 and 46:-59:13
resonances but only the 46:-59:13 resonant angle shows strong
structure in Fig. 4. We conclude that proximity is not the only

factor governing three-body resonant strength (as inferred through
structure in a resonant angle histogram).

As discussed in Section 5, Cressida and Desdemona are near
or in the 46:47 first-order mean-motion resonance and Desdemona
and Portia are near their 12:13 first-order mean-motion resonance.
The two resonant angles from the nearby first-order mean-motion
resonances are

φp = 47λDes − 46λCres − �Des

φq = 13λPor − 12λDes − �Des

and the difference between these angles

θ = φq − φp

= 46λCres − 59λDes + 13λPor (78)

and equivalent to the 46:-59:13 Laplace angle involving the three
bodies Cressida, Desdemona and Portia. This particular three-body
resonance could be strong because each consecutive pair of bodies
is near a first-order mean-motion resonance. We describe this setting
as a ‘resonant chain’. The 39:-50:11 three-body resonance, perhaps
because it is not near any first-order mean-motion resonances be-
tween pairs of bodies, is weaker than the 46:-59:13 resonance. In
Fig. 4, the 92:-118:26 angle histogram also shows structure, how-
ever this angle is a multiple of two of the 46:-59:13 Laplace angle.
The 92:-118:26 Laplace angle histogram may show structure due
to the 46:-59:13 three-body resonance.
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Resonant chains and three-body resonances 3973

Figure 4. Histograms of resonant angles of nearby three-body resonances Cressida, Desdemona and Portia.

In Fig. 3, the 5:-13:8 angle histogram shows structure suggest-
ing that this resonance with Cressida, Juliet and Portia might be
stronger than the other three-body resonances in this trio. If Cres-
sida, Juliet and Portia are near the 5:-13:8 resonance then they are
also near resonances described with integer multiples of this, the
10:-25:16 (multiply by 2) and the 15:-39:24 (multiply by 3) res-
onances. For resonance strengths estimated from the zeroth-order
interaction terms alone, the resonance strength energy coefficient
εpq ∼ ε2p,2q and so on for other multiples as long as the strength is
not exponentially truncated by the Laplace coefficients. The 5:-13:8
three-body resonance may be strong because of the contribution
from higher index multiples.

Is the 5:-13:8 resonance with Cressida, Juliet and Portia also near
two two-body first-order resonances and a Laplace angle associated
with a resonant chain? As seen in Table 3 Cressida and Juliet are
fairly near the 15:16 first-order resonance and Juliet and Portia
fairly near the 23:24 first-order resonance. The 15:-39:24 Laplace
angle is a multiple of three times the 5:-13:8 Laplace angle. The 5:-
13:8 Laplace angle may show structure due to the 15:16 resonance
between Cressida and Juliet or the 23:24 resonance between Juliet
and Portia. The histogram on the lower right in Fig. 3 shows the
histogram for the Laplace angle 15:-39:24 with θ̇ = 1.8 × 10−6 Hz,
and this angle shows structure even though the distance to resonance
is larger than the other considered Laplace angles. The structure in
the 5:-13:8 Cressida, Juliet and Portia angle histogram could be

explained by the combined effects of the 5:-13:8 and multiples of
this resonance, each with strength contributed with zeroth-order
terms, or because the 15:-39:24 resonance is near a chain of first-
order resonances.

6.2 Comparing variations in angle histograms with variations
in orbital elements

To explore the role of three-body angles we compare the structure
seen in histograms of two-body and three-body resonant angles
with variations in orbital elements. The strongest structure seen in
the histogram of a Laplace angle was that seen in the 46:-59:13
angle with Cressida, Desdemona and Portia. We plot in Fig. 5 the
46:-59:13 Laplace angle histogram, the resonant angle histograms
for the 46:47 first-order resonance between Cressida and Desde-
mona, the 12:13 resonance between Desdemona and Portia and
semimajor axes and eccentricities for the three bodies as a function
of time. We find that transitions between states in the three-body
resonant angle are simultaneous with variations in semimajor axis
in all three bodies. The transitions in the three-body resonant an-
gles are more important than those seen in the two-body resonant
angles. For example, at t ∼ 3.5 × 1011 s the angle 46λCres − 47λDes

+ � Cres flips from 0 to π and there are only weak variations in
aCres, aDes at this time. However, at t ∼ 4 × 1011 s the Laplace
angle 46λCres − 47λDes + 13λCres varies from 0 to π and coupled
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3974 A. C. Quillen and R. S. French

Figure 5. Two- and three-body resonances influencing Cressida, Desdemona and Portia. We plot both resonant angles (histograms), semimajor axes (blue
lines) and eccentricities (green lines) so that they can be directly compared. Scaling for semimajor axes and eccentricities is the same as in Fig. 1. Transitions
in the 46:-59:13 Laplace angle with Cressida, Desdemona and Portia are coincident with coupled variations in semimajor axes of the three moons.

variations in semimajor axis of all three bodies are seen. Cressida
and Portia move inward as Desdemona moves outward, as predicted
from conserved quantities present when a three-body resonance is
important (Quillen 2011). Transitions of the Laplace angle are bet-
ter associated with jumps in semimajor axis of all three bodies than
the transitions in the two-body resonant angles.

Coupled motions in the semimajor axes of three bodies arise
from a Hamiltonian that contains a three-body Laplace angle. Using
Hamilton’s equation on equation (77)

�̇i = −∂H

∂λi

= pεpq sin(pλi − (p + q)λj + qλk). (79)

If the Laplace angle is quickly circulating then on average �i (the
Poincaré coordinate dependent on ai) does not change. However,
if the Laplace angle remains fixed at π/2 then �i can increase or
decrease, depending on the sign of εpq. By similarly computing
�̇j and �̇k we find that simultaneous variation in the semimajor
axis of the three bodies would take place with the inner and outer

bodies moving together and the middle one moving in the opposite
direction.

In Fig. 6, we plot resonant angles and orbital elements with the
goal of understanding the variations in Bianca’s orbit. At t ∼ 1–2
× 1011 and t ≈ 3 and 4 × 1011 s variations in Bianca’s eccentricity
take places when the three-body angle histogram 15λBia − 62λCres

+ 47λDes exhibits structure. A three-body resonance influencing
Bianca appears to be the 15:-62:47 between Bianca, Cressida and
Desdemona. This three-body resonance is near the 15:16 first-order
mean-motion resonance between Bianca and Cressida and the 46:47
first-order mean-motion resonance between Cressida and Desde-
mona. This is a resonant chain. The 11:-36:25 resonance between
Bianca, Desdemona and Juliet may be responsible for variations in
Bianca’s orbital elements at t ∼ 3.5–5 × 1011 s. This is near the
11:12 first-order mean-motion resonance between Bianca and Des-
demona and the 24:25 first-order mean-motion resonance between
Desdemona and Juliet, so it too is a resonant chain. The 9:-19:10
resonance between Bianca, Cressida and Juliet is not near any two-
body resonances, and neither is it a multiple of the Laplace angle of
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Resonant chains and three-body resonances 3975

Figure 6. Two- and three-body resonances influencing Bianca, Cressida and Desdemona. We plot both resonant angles (histograms), semimajor axes (blue
lines) and eccentricities (green lines) so that they can be directly compared. Scaling for semimajor axes and eccentricities is the same as in Fig. 1. Variations
in the semimajor axis of Bianca tend to happen during transitions in three-body Laplace angles.

a resonant chain. Since it has low p, q it may be strong because reso-
nances associated with multiples of the resonant angle contribute to
its strength. Most of the variations in Bianca’s semimajor axis are
correlated with periods of time where three-body Laplace angles
are slowly moving or undergoing transitions.

In Fig. 7, we show additional angle histograms linking motions of
Desdemona, Juliet, Portia and Rosalind. Not all variations in orbital
elements are explained. For example, Rosalind drops in eccentricity
at t ∼ 8.5 × 1011 s without any strong change in semimajor axis.
This could be due to a secular resonance that we have not identified.
A small jump in Rosalind’s semimajor axis at t ∼ 4 × 1011 s
is most likely due to a Desdemona, Juliet and Rosalind coupling

such as the 20:-27:7 resonance as Desdemona and Rosalind both
move outwards while Juliet moves inwards. The 20:-27:7 resonance
of Desdemona, Juliet and Rosalind is a resonant chain but not
with consecutive pairs; rather, the chain involves the 6:7 first-order
resonance between Desdemona and Rosalind (the outer two bodies)
and the 20:21 between Desdemona and Juliet. Juliet, Portia and
Rosalind are near a 2:-3:1 Laplace resonance that could be strong
because many of its multiples would contribute to the resonance.

In Fig. 8, we examine variations in Cupid, Belinda and Perdita.
The two-body first-order resonances, the 57:58 between Cupid and
Belinda, the 24:25 between Cupid and Perdita and the 43:44 be-
tween Belinda and Perdita account for many of the variations in
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3976 A. C. Quillen and R. S. French

Figure 7. Two- and three-body resonances influencing Desdemona, Juliet, Portia and Rosalind. We plot both resonant angles (histograms), semimajor axes
(blue lines) and eccentricities (green lines) so that they can be directly compared. Scaling for semimajor axes and eccentricities is the same as in Fig. 1.

orbital elements. However, a number of three-body angles show
structure. The 7:-43:36 Laplace angle between Rosalind, Belinda
and Perdita is a sum of the 43:44 resonant angle with Belinda/Perdita
and the 7:8 resonant angle between Rosalind/Perdita, so it is a res-
onant chain but involving a mean-motion resonance with the outer
pair Rosalind/Perdita. Rosalind, Belinda and Perdita are near a low-
integer 2:-3:1 Laplace resonance and Rosalind, Cupid and Perdita
are near a 4:-7:5 Laplace resonance, and these could be strong be-
cause many of their multiples would contribute to the resonance.
The 5:-61:56 with Portia, Cupid and Belinda is a chain with the
5:6 between Portia and Cupid and the 55:56 resonance with Cupid
and Belinda. Likewise the 4:-61:57 with Juliet, Cupid and Belinda

is a resonant chain (the 4:5 with Juliet/Cupid and the 56:57 with
Cupid/Belinda). Cupid and Belinda are so near each other that the
55:56 resonance is nearby even though the nearest resonance is
the 57:58. The three-body resonances involving Juliet and Portia
perhaps account for the sensitivity of Cupid’s crossing time-scale
to the presence of bodies other than Belinda and Perdita (French &
Showalter 2012).

In Figs 7 and 8, we found histograms of Laplace angles exhibiting
structure, and they are resonant chains, but instead of involving
mean motions between consecutive pairs, they involve a mean-
motion resonance between the inner and outer body of the trio.
There are two ways to create the three-body p: −(p + q): q Laplace
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Resonant chains and three-body resonances 3977

Figure 8. Two- and three-body resonances influencing Rosalind, Cupid, Belinda and Perdita. We plot both resonant angles (histograms), semimajor axes (blue
lines) and eccentricities (green lines) so that they can be directly compared. Scaling for semimajor axes and eccentricities is the same as in Fig. 1. The 57:58
Cupid/Belinda and 24:25 Cupid/Perdita two-body resonances account for many of the variations in orbital elements. The presence of three-body resonances
involving Portia or Juliet with Cupid may account for the sensitivity of Cupid’s crossing time-scale to the presence of these bodies.

angle from a difference of first-order resonance arguments involving
pairs of bodies,

θ = (p + q − 1)λi − (p + q)λj + �i

− [(q − 1)λi − qλk + �i] (80)

for the (p + q − 1): (p + q) resonances between bodies i, j and the
(q − 1): q resonance between bodies i, k and

θ = pλi − (p + 1)λk + �k

− [
(p + q)λj − (p + q + 1)λk + �k

]
(81)

for the p: (p + 1) resonance between bodies i, k and the (p + q): (p +
q + 1) resonance between bodies j, k. The 20:-27:7 resonance with

Desdemona, Juliet and Rosalind is an example of that in equation
(80) and the 7:-43:36 Laplace angle between Rosalind, Belinda and
Perdita is an example of that in equation (81).

7 T H R E E - B O DY R E S O NA N T S T R E N G T H S
A N D C H AOT I C B E H AV I O U R N E A R A
R E S O NA N T C H A I N O F T WO F I R S T-O R D E R
M E A N - M OT I O N R E S O NA N C E S

From the Laplace angle histograms, we have identified candidate
three-body resonances in the Uranian system. While many of the
variations in orbital elements in the Cupid, Belinda and Perdita trio
appear to be caused by a trio of two-body resonances, three-body
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resonances seem particularly important amongst the Bianca, Cres-
sida, Desdemona, Juliet and Portia group. In Section 7.1, we cal-
culate, using a near-identity canonical transformation, three-body
resonance strengths for the setting where a trio of bodies is near
(but not extremely close to) a pair of two-body first-order mean-
motion resonances. Three-body resonance strengths and their libra-
tion frequencies are computed for the strong three-body resonances
previously identified in the Uranian satellite system.

When a two-body resonant angle freezes, this gives a small divi-
sor in the near-identity canonical transformation used in Section 7.1,
so in Section 7.3 we employ a different canonical transformation
for a Hamiltonian containing two first-order resonant terms. The
resulting Hamiltonian resembles a forced pendulum and is used to
estimate Lyapunov time-scales from resonant overlap in the set-
ting when a trio of bodies is in a resonant chain of two first-order
resonances.

7.1 Resonant strengths of three-body resonances near
two-body first-order mean-motion resonances

Quillen (2011) ignored the effect of nearby two-body resonances
when estimating the strength of a three-body resonance. However,
Figs 3 and 4 suggest that these are stronger than three-body reso-
nances that are distant from two-body resonances. To estimate the
strength of resonant-chain three-body resonances we follow a sim-
ilar procedure to that used by Quillen (2011), using a first-order
(in perturbation strengths) near-identity canonical transformation.
However, instead of using zeroth-order perturbation terms (in ec-
centricity) we use first-order (in eccentricity) perturbation terms.
Here, we consider the case when the system is near, but not in,
either two-body resonance so that small divisors do not invalidate
the first-order nature of the transformation.

We consider the Keplerian Hamiltonian, precession terms due
to the oblate planet and two first-order (in eccentricity) resonance
terms

H (�, �, λ, γ ) =
∑

l

[
− m3

l

2�2
l

+ Bl	l

]

× εp	
1/2
j cos(pλj + (1 − p)λi − �j )

+ εq	
1/2
j cos(qλk + (1 − q)λj − �j ) (82)

with

εp(�i,�j ) = −mim
3
j

�2
j

(
2

�j

)1/2

f31(αij , p)

= −mim
1/2
j 21/2

a
5
4
j

f31(αij , p)

εq (�j, �k) = −mjm
3
k

�2
k

(
2

�j

)1/2

f27(αjk, q)

= −m
1
2
j mk21/2

aka
1
4
j

f27(αij , p) (83)

using equations (33) and (38) for the coefficients for the two-body
first-order mean-motion resonances. We define angles

φp ≡ pλj + (1 − p)λi − �j

φq ≡ qλk + (1 − q)λj − �j . (84)

We have chosen two resonant angles that contain � j. The Hamilto-
nian contains two terms that are first order in perturbation parame-
ters εp, εq.

Using a canonical transformation first order in perturbation
strengths, we try to remove the two resonant terms. The result
is a Hamiltonian that contains no first-order terms but does con-
tain second-order terms proportional to εpεq. We use a generating
function that is a function of new momenta (�′, �′) and old angles
(λ, γ )

F2(�′,�′; λ, γ ) =
∑

l

[
�′

lλl + 	′
lγl

]

− εp	′1/2
j

φ̇p

sin φp − εq	
′1/2
j

φ̇q

sin φq (85)

with divisors

φ̇p ≡ pnj + (1 − p)ni + Bj

φ̇q ≡ qnk + (1 − q)nj + Bj (86)

and with Bj from secular perturbations. The mean motions, Bj, εp

and εq are evaluated using momenta �′. Near a two-body resonance
φ̇p or φ̇q is small, leading to a strong perturbation or a small divisor.
We assume here that the system is near but not exactly on resonance
so these divisors never actually reach zero. Equivalently, we assume
that the angles φp, φq are circulating, increase or decrease contin-
ually, and do not librate around a particular value or remain fixed.
In the next section, we will employ a different change of variables
that contains no small divisors.

The canonical transformation gives a near-identity transforma-
tion. New coordinates are equivalent to old coordinates plus a term
that is first order in perturbation strengths εp or εq. Relations be-
tween new and old coordinates are

�i = ∂F2

∂λi

= �′
i − (1 − p)

εp

φ̇p

	′1/2
j cos φp

�j = ∂F2

∂λj

= �′
j − p

εp

φ̇p

	′1/2
j cos φp − (1 − q)

εq

φ̇q

	′1/2
j cos φq

�k = ∂F2

∂λk

= �′
k − q

εq

φ̇q

	′1/2
j cos φq

λ′
i = ∂F2

∂�′
i

= λi +
[

εp

φ̇p

∂φ̇p

∂�i

− ∂εp

∂�i

]
	′1/2

j

φ̇p

sin φp

λ′
j = ∂F2

∂�′
j

= λj +
[

εp

φ̇p

∂φ̇p

∂�j

− ∂εp

∂�j

]
	′1/2

j

φ̇p

sin φp

+
[

εq

φ̇q

∂φ̇q

∂�j

− ∂εq

∂�j

]
	′1/2

j

φ̇q

sin φq

λ′
k = ∂F2

∂�′
k

= λk +
[

εq

φ̇q

∂φ̇q

∂�k

− ∂εq

∂�k

]
	′1/2

j

φ̇q

sin φq.

γ ′
i = −� ′

i = ∂F2

∂	′
i

= γi = −�i

γ ′
j = −� ′

j = ∂F2

∂	′
j

= −�j − εp

2	′1/2
j φ̇p

sin φp − εq

2	′1/2
j φ̇q

sin φq

γ ′
i = ∂F2

∂	′
k

= γk = −�k

	i = ∂F2

∂γi

= 	′
i
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	j = ∂F2

∂γj

= 	′
j − εp

φ̇p

	′1/2
j cos φp − εp

φ̇q

	′1/2
j cos φq

	k = ∂F2

∂γk

= 	′
k. (87)

Inserting the new variables into the Hamiltonian (equation 82) we
expand to second order in perturbation strengths εp and εq. Because
they do not contribute to the three-body resonant argument, we
neglect terms proportional to cos 2φp or sin 2φp (and similarly for
φq). We keep terms proportional to cos φpcos φq and sin φpsin φq.
We rewrite these products in terms of the Laplace angle

θ ≡ φq − φp = (p − 1)λi − (p − 1 + q)λj + qλk (88)

that is similar to that discussed in the previous section where we
discussed a search for nearby three-body resonances (see equation
74 but with p − 1 replacing p).

Neglecting the primes on the coordinates, the Hamiltonian (equa-
tion 82) in the new variables is

K(�, �, λ, γ ) =
∑

l

[
− m3

l

2�2
l

+ Bl	l

]

+ χpq cos((p − 1)λi − (p + q − 1)λj + qλk).

(89)

The first-order terms (proportional to εp or εq) have been removed
leaving a single three-body term that is second order in perturba-
tion strengths and proportional to εpεq. The three-body term has
coefficient

χpq = −3

2

p(1 − q)	j

mja
2
j

εpεq

φ̇pφ̇q

+ (q − 1)
εq	j

2φ̇p

(
εp

φ̇p

∂φ̇p

∂�j

− ∂εp

∂�j

)

− p
εp	j

2φ̇p

(
εq

φ̇q

∂φ̇q

∂�j

− ∂εq

∂�j

)

− pεp	j

2φ̇p

∂εq

∂�j

+ (q − 1)εq	j

2φ̇q

∂εp

∂�j

− εqεp

2

(
1

φ̇p

+ 1

φ̇q

)
. (90)

The first term arises from the Keplerian part of the Hamiltonian, the
remainder from the resonant terms. The second and third terms come
through perturbations on mean longitudes, the fourth and fifth terms
through perturbations on �, and the last term from perturbations on
� j and 	j. Neglecting the dependence of precession rates on �j,

∂φ̇p

∂�j

≈ (p − 1)
3nj

�j

= 3(p − 1)

mja
2
j

(91)

∂φ̇q

∂�j

≈ −q
3nj

�j

= − 3q

mja
2
j

(92)

and we use this to simplify χpq to

χpq ≈ 9pq

2

εpεq

φ̇pφ̇q

	j

mja
2
j

− εqεp

2

(
1

φ̇p

+ 1

φ̇q

)
. (93)

The last term in equation (93), independent of 	j, dominates because
it does not depend on the square of the eccentricity of the jth body.
This term only arises if both of the two first-order resonant terms
are proportional 	

1/2
j . If we had chosen first-order resonances with

arguments pλj + (1 − p)λi − � i and qλk + (1 − q)λi − � j, the
estimated three-body resonance strength would not have contained
a term independent of eccentricity.

In the low-eccentricity and low-mass setting, Quillen (2011) sus-
pected that first-order resonance terms could be neglected when
estimating a three-body resonance strength, precisely due to their
expected dependence on eccentricity. The first term in equation (93)
does depend on eccentricity so the eccentricity independence of the
last term is unexpected.

We try to understand why one of the terms in equation (93) is
independent of momentum 	j by considering an ‘indirect’ effect
(see section 4 in Nesvorný & Morbidelli 1998a). For example,
Nesvorný & Morbidelli (1998a) considered the perturbations on the
asteroid’s motion that are raised by the oscillations of Jupiter’s orbit
forced by Saturn. Recall the Hamiltonian in equation (45). We focus
on only the term associated with the p resonance or εp	

1/2
j cos φp .

Hamilton’s equation (neglecting the q resonance) gives

	̇j = −∂H

∂γi

= εp	
1/2
j sin φp (94)

that we rewrite as

d

dt
	

1/2
j = εp

2
sin φp. (95)

If the angle φp circulates, we can integrate this to give

	
1/2
j = εp

2φ̇p

cos φp + constant. (96)

When inserted into the other resonant term, εq	
1/2
j cos φq , we gain

a three-body term

εqεp

2φ̇p

cos φp cos φq = εqεp

4φ̇p

[
cos(φp − φq ) + cos(φp + φq )

]
. (97)

The three-body term is independent of eccentricity or 	j. Here,
we essentially followed the estimates for three-body resonance
strengths in the asteroid belt by Murray et al. (1998), where the
presence of Saturn introduces additional frequencies into Jupiter’s
orbit and these give the three-body resonances.

Using equation (83), and neglecting terms proportional to 	j, we
can write equation (93) for the three-body resonance strength as

χpq ∼ −mimjmk

a
3
2
j ak

f31(αij , p)f27(αjk, q)

(
1

φ̇p

+ 1

φ̇q

)
(98)

and using equation (35) for f27 and f31 for closely spaced bodies

χpq ∼ mimjmk

a
3
2
j ak

1

16δij δjk

e−pδij −qδjk

(
1

φ̇p

+ 1

φ̇q

)
. (99)

To estimate the strength of the three-body resonance we use the
same canonical transformation as in section 3.2 of Quillen (2011).
The generating function

F2(λ, J) = J ((p − 1)λi − (p − 1 + q)λj + qλk)

+ λjJj + λkJk (100)

gives in vicinity of resonance

H (J , θ ) = AθJ
2

2
+ bθJ + χpq cos θ + · · · . (101)

Here, the new momentum

J = �i

p − 1
(102)

is conjugate to the Laplace angle θ . The coefficients are

Aθ = −3

(
(p − 1)2

mia
2
i

+ (p − 1 + q)2

mja
2
j

+ q2

mka
2
k

)
(103)
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bθ = (p − 1)ni − (p − 1 + q)nj + qnk (104)

(using equations 32 and 33 of Quillen 2011). The frequency bθ

describes distance to resonance. This frequency can be recognized
as equivalent to θ̇ that we used earlier (equation 75 but with index
p − 1 replacing index p).

The three-body resonant libration frequency ν3 can be estimated
from χpq and Aθ

ν3 ≈ √|Aθχpq | (105)

and the condition to be in the vicinity of resonance is∣∣∣∣bθ

ν3

∣∣∣∣ � 1 (106)

following section 3.3 of Quillen (2011). From the resonance sepa-
ratrix width, we estimate the size of variations of momentum

�J ∼ 2
√

χpq

Aθ

= 2ν3

Aθ

(107)

and using equation (102), related variations in semimajor axis of
the ith body

δi ∼ 2(p − 1)

mia
1/2
i

�J (108)

with δi ≡ �ai/ai. Conserved quantities

(p − 1)Jj = (p − 1)�j + (p + q)�i

(p − 1)Jk = (p − 1)�k − q�i (109)

relate motions between the semimajor axes of consecutive bodies
with the outer and inner two bodies moving together and the middle
one moving in the opposite direction, or

− mjδj = mi

(p + q − 1)

p − 1
δj = mk

(p + q − 1)

q
δj . (110)

Quillen (2011) estimated three-body resonance strengths, εpq,
from two zeroth-order (in eccentricity) terms. Here, we estimate
three-body resonance strengths, χpq, from two first-order terms.
We can compare the computed resonance strengths by comparing
εpq to χpq. After a series of canonical transformations the Hamil-
tonian would contain two terms containing the three-body argu-
ment, one with coefficient χpq and the other with coefficient εpq.
Equations (23) and (46) of Quillen (2011) give

εpq ∼ mimjmk

12δij δjk

ln δij ln δjk exp(−(pδij + qδjk)). (111)

Taking a ratio of equation (99) to this we estimate

χpq

εpq

∼ 1

ln δij ln δjk

(
1

φ̇p

+ 1

φ̇q

)
. (112)

For a system near a two-body resonance, the divisor φ̇p or φ̇q would
have a larger magnitude than the logarithmic terms. Consequently,
we expect a three-body resonance that is a resonant chain comprised
of nearby two-body resonances to be stronger than one comprised
solely of two single zeroth-order terms.

For a p: −(p + q): q resonance comprised of zeroth-order terms
the 2p: −2(p + q): 2q resonance has approximately the same size
coefficient as long as pδij � 1 and qδjk � 1; in other words εpq ∼
ε2p,2q ∼ εup,uq for integer u. This is not true when combining first-
order resonances, χpq �=χ2p,2q. For example, if the system is near the
p: p + 1 first-order resonance, then it is not near the first-order 2p:
2p + 1 resonance, but it would be near the second-order 2p: 2p + 2
resonance. Combining two second-order (in eccentricity) resonant

terms, and following the same procedure to remove the first-order (in
perturbation strength) terms via canonical transformation, produces
a resonant term that would depend on eccentricity (∝	j). We expect
three-body resonance strengths estimated from two second-order
resonance terms to be weaker than those estimated from pairs of
first-order resonances.

We use χpq to estimate the frequencies associated with the reso-
nant chain three-body resonances identified in our numerical inte-
gration. Listed in Table 5 are the minimum distances to three-body
resonance, θ̇ or bθ (see equations 75 or 104), during the integration
for t < 1012 s. At the time of minimum distance to resonance, we
computed ν3 using equation (105), based on the resonant strength
from first-order terms, χpq (equation 93). We also computed the
three-body libration frequency using εpq (based on zeroth-order
terms and computed using equation 23 of Quillen 2011). The ratio
of the two frequencies is also listed and shows that the resonance
strengths computed using first-order terms can be an order of mag-
nitude higher for the resonant chain three-body resonances than
previously computed using zeroth-order terms alone.

Table 5 shows that the libration frequencies of the strongest
three-body resonances are at most one to two orders of magni-
tude smaller than the frequencies of the two-body resonances. The
strongest three-body resonance, the 46:-59:13 with Cressida, Des-
demona and Portia, has an estimated libration period of only 3 yr,
and this is only a few times longer than the libration period in the
Cressida/Desdemona 46:47 mean-motion resonance (see Table 3).
The three-body resonances are surprisingly strong considering that
they must be second order in perturbation strengths and perturbation
strengths are weak because of the low masses of the inner Uranian
moons. This resonance strength is because of the small interbody
separations, the small divisors, φ̇q or φ̇q , and the lack of dependence
on eccentricity. Checking the distance to resonance we find that the
minimum distance to resonance, |θ̇ |, is in some cases less than the
resonance libration frequency, implying that there are times during
the integration when the three-body resonances are important.

The canonical transformation we used (equation 87) contains
small divisors φ̇p, φ̇q . At what point is the near-identity canonical
transformation no longer a good approximation? The p resonance
has a characteristic frequency scale given in equation (52). Taking
as a limit the smallest possible φ̇p to be equal to νp (the characteristic
frequency associated with the p resonance) and inserting this value
into the eccentricity independent term for the three-body resonance
strength (equation 93) we estimate

χpq ∼ εpεq

φ̇p

∼ εpεq

νp

∼ εp	
1/2
j εq	

1/2
j

νp	j

∼ εq	
1/2
j (113)

and we have used equation (59) for the characteristic energy scale
of the p resonance. This is equal to the energy in the q resonance.
As long as |φ̇p| and |φ̇q | are larger than the respective p or q reso-
nance libration frequency, the system is not in the vicinity of the p
or q resonance, and the canonical transformation is valid. Just out-
side this region we estimate that the three-body resonance strength
approaches that of the two-body resonances and the three-body res-
onance strengths can be nearly as strong as the two-body resonance
strengths (and consistent with our calculated values).

7.2 Distance to resonant chains

For three satellites with interbody spacings δij and δjk, what are
the properties of the nearest resonant chain? The closest first-order
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Resonant chains and three-body resonances 3981

Table 5. Three-body resonant chains.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)
i j k q:-(p+q):q θ̇init θ̇m ν3 (Hz) νr λolp λolp,m με δi δj δk

Bia Cres Des 15:-62:47 8.4e-08 −1.7e-10 2.7e-08 14.0 0.8 −0.002 −0.16 1.5e-06 1.8e-06 2.1e-06
Bia Des Jul 11:-36:25 6.7e-07 5.8e-07 5.3e-09 6.0 8.9 7.675 −0.07 6.4e-07 9.4e-07 1.8e-07
Cres Des Por 46:-59:13 −2.6e-07 3.6e-11 7.6e-08 10.2 −2.4 0.000 −0.78 3.9e-06 8.0e-06 2.1e-07
Cres Jul Por 15:-39:24 1.9e-06 1.8e-06 9.6e-09 3.3 16.3 15.271 −0.14 1.2e-06 1.5e-06 3.9e-07
Des Jul Ros 20:-27:7 3.4e-08 1.2e-10 1.0e-09 1.2 0.5 0.002 −0.32 2.8e-07 1.1e-07 8.6e-08
Cres Des Jul 45:-70:25 −9.5e-07 −4.9e-07 3.1e-08 5.5 −8.9 −4.610 −0.89 1.2e-06 3.0e-06 3.0e-07
Des Jul Por 23:-47:24 2.2e-07 2.6e-08 1.2e-08 3.3 1.9 0.221 −0.13 2.0e-06 1.2e-06 2.5e-07
Des Jul Ros 23:-31: 8 9.0e-07 7.4e-07 2.0e-09 2.3 12.4 10.178 −0.33 4.9e-07 1.9e-07 1.5e-07
Por Ros Bel 13:-24:11 −1.7e-07 −1.7e-07 1.5e-09 2.4 −3.9 −3.931 −0.18 4.3e-08 5.7e-07 1.3e-07
Por Cup Bel 5:-61:56 1.2e-06 3.9e-07 1.3e-08 1.0 5.7 1.841 −0.42 4.5e-10 2.4e-06 1.8e-08
Jul Cup Bel 4:-61:57 −7.3e-07 −5.7e-07 9.8e-09 1.0 −3.4 −2.647 −0.15 6.2e-10 1.8e-06 1.3e-08
Ros Bel Perd 8:-49:41 8.1e-08 9.7e-11 2.4e-09 1.4 0.4 0.001 −0.21 6.4e-09 1.9e-08 6.6e-07
Ros Bel Perd 9:-55:46 4.2e-07 5.8e-08 3.2e-09 1.8 2.0 0.270 −0.20 7.5e-09 2.2e-08 7.7e-07
Ros Cup Bel 11:-73:62 8.8e-07 1.4e-09 5.2e-09 1.4 3.8 0.006 −0.10 1.9e-09 8.0e-07 5.4e-09
Ros Cup Bel 10:-67:57 −4.9e-07 −3.2e-07 8.9e-09 2.4 −2.3 −1.486 −0.10 3.6e-09 1.5e-06 1.0e-08
Ros Cup Perd 11:-38:27 5.9e-07 3.6e-08 3.0e-10 2.6 35.1 2.139 −0.10 3.5e-10 7.6e-08 1.8e-08
Cup Bel Perd 57:-101:44 −5.5e-07 4.1e-10 5.9e-08 92.3 −2.5 0.002 −0.45 9.5e-06 1.3e-07 2.4e-06
Jul Por Ros 22:-33:11 9.4e-07 9.4e-07 3.4e-09 2.1 8.2 8.177 −0.14 5.4e-07 3.5e-07 8.3e-07
Jul Por Ros 44:-66:22 1.9e-06 1.9e-06 3.7e-09 2.4 10.1 10.216 −0.14 3.0e-07 1.9e-07 4.5e-07
Des Jul Ros 20:-27: 7 3.4e-08 1.2e-10 1.4e-09 1.7 0.4 0.001 0.07 3.9e-07 1.5e-07 1.2e-07
Ros Cup Perd 7:-24:17 1.2e-06 8.8e-07 9.5e-09 89.0 78.3 56.142 0.05 1.8e-08 3.9e-06 8.9e-07
Ros Bel Perd 7:-43:36 −2.6e-07 −4.0e-09 7.6e-09 4.4 −1.3 −0.019 0.10 2.3e-08 6.9e-08 2.4e-06

Columns 1–3. Abbreviated names of the three bodies considered. Column 4. A three-body angle θ = pλi − (p + q)λj + λk is defined with integers
p,-(p+q),q. Except for the bottom three rows, the chain consists of bodies i, j in a first-order p:p+1 mean-motion resonance and the bodies j, k in
a q-1:q mean-motion resonance. In the bottom three rows, the chain arises from p+q-1:p+q with bodies i, j and q-1:q for bodies i, k (Desdemona,
Juliet and Rosalind 20:-27:7) or p+q:p+q+1 for bodies j, k and p:p+1 for bodies i, k (Rosalind, Cupid and Perdita 7:-24:17 and Rosalind, Belinda
and Perdita 7:-43:36), (see equations 80 and 81). Column 5. Distance to three-body resonance, θ̇ , at the start of the numerical integration in Hz.
Column 6. Minimum distance to three-body resonance, θ̇ , for t < 1012 s in Hz. Column 7. Libration frequency in Hz of the three-body resonance.
Here ν3 refers to the libration frequency computed with χpq, using equations (105), (93) and with Aθ from equation (104). Column 8. The ratio
of the libration frequency computed with χpq compared to that computed with εpq. The square of this ratio is equivalent to the ratio χpq/εpq.
Column 9. Overlap ratio for the two first-order resonances computed from the initial θ̇init. The libration frequency of the stronger resonance is used
to compute this ratio. Column 10. Overlap ratio computed from minimum θ̇min. Column 11. Ratio of resonance strengths for the two first-order
resonances. Listed is εq/εp if the p resonance is stronger otherwise εq/εp is given. Columns 12–15. Sizes of variations in semimajor axis for each
body (equations 108, 110) in units of semimajor axis.

resonance to the pair of bodies i, j and to the pair of bodies j, k have
integers p, q such that

p ∼ 2/3δ−1
ij

q ∼ 2/3δ−1
jk (114)

(using equation 17). What is the frequency of the resonant angle
for the p + 1 first-order resonance? The difference between the
two frequencies |φ̇p − φ̇p+1| = nij ∼ 3

2 δij . This allows us to esti-
mate the maximum possible value of |φ̇p| for the closest first-order
resonance. We find

|φ̇p| < 2/3δij

|φ̇q | < 2/3δjk (115)

for the nearest first-order resonances. Subtracting the two frequen-
cies, φ̇p − φ̇q , we find that the frequency of the associated Laplace
angle satisfies

|θ̇ | < 2/3
(
δij + δjk

)
. (116)

These values of integers p, q give a slowly moving Laplace angle,
but they may not give the slowest Laplace angle. However, if δij <δjk

then we can increase or decrease the p index to find a slower three-
body angle and vice versa for the q index. For example, in our
integration, Cupid and Belinda are pretty near the 56:57 resonance
even though the closest first-order resonance is the 57:58. There

might be other integers p, q giving very small values for |pni − (p
+ q)nj + qnk| but these might not be near the p: p + 1 and q: q +
1 resonances. If we wanted the slowest Laplace angle we could use
Dirichlet’s approximation theorem to estimate a maximum value of
|θ̇ | for the closest three-body resonance. We estimate that there is
a pair of integers p, q with the first pair of bodies near the p first-
order resonance and the second pair near the q first-order resonance,
minimizing θ̇ , with

|θ̇ | < min(δij , δjk), (117)

|φ̇p| � δij and |φ̇q | � δjk . For this choice of p, q∣∣∣∣ 1

φ̇p

+ 1

φ̇q

∣∣∣∣ � max
(
δ−1
ij , δ−1

jk

)
(118)

giving for the three-body resonance strength

|χpq | � mimjmk

δij δjk min(δij , δjk)
(119)

using equation (99). Let us call m1 the most massive of our three
masses, m2 the middle one and m3 the least massive. Let δ1 be the
smaller of δij and δjk and δ2 the larger one. Using this notation

|θ̇ | � δ1. (120)

The coefficient (equation 128) is inversely proportional to the mass
of the lightest body and contains the square of p2 or p2 or (p +
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3982 A. C. Quillen and R. S. French

q)2 depending upon which one is associated with the lowest mass
body. Conservatively, |Aθ | � δ−2

2 m−1
3 . The three-body resonance

libration frequency (equation 105)

ν3 � √
m1m2δ

−1
1 δ

−3/2
2 . (121)

Using equation (107) we can estimate a characteristic scale for
semimajor axis variations in resonance for the lightest body

da/a � √
m1m2δ

−1
1 δ

−1/2
2 . (122)

Conserved quantities can be used to estimate variations in semima-
jor axes for other bodies. For masses similar to a few times 10−9

and separations of the order of 0.02, we estimate semimajor axis
variations (as a fractional change) have a scale in the range 10−6–
10−7. One of the divisors φ̇p or φ̇q could be smaller, giving a larger
value for χpq and da/a. This size scale is consistent with the size of
small variations in semimajor axis seen during the integration (see
Fig. 1) and the sizes for semimajor axis variations in three-body
resonant chains listed in Table 5. The small variations in semimajor
axis seen in the simulation might be attributed to a continual state
of diffusion in semimajor axes via weak, but ubiquitous, three-body
resonances. However, the large variations in orbital elements cannot
be attributed to the three-body resonances alone.

A crude diffusion coefficient for wander in semimajor axis due
to the three-body resonant chains can be estimated from the sizes of
semimajor axis variations and the resonant libration frequency. The
product of the square of equation (122) with equation (121) gives a
diffusion coefficient (due to three-body resonances) for variations
in semimajor axis

Da ∼ m3δ−11/2 (123)

and we have used a single mass and separation for the estimate. This
estimate has the same exponent for mass as that estimated by Quillen
(2011, see her equation 65) but has a larger negative exponent for
δ as the terms used to construct the three-body arguments are first
rather than zeroth order in eccentricity. If the wander in semimajor
axes is due to first-order two-body resonances alone then using sim-
ilar scaling we would expect Da ∝ m2 and so a weaker dependence
on mass than estimated here. The crossing time-scale measured
by French & Showalter (2012) has the exponent for mass ranging
from −2 to −5. If the system must diffuse an equivalent distance
in all simulations before two moons cross orbits then the crossing
time-scale would be proportional to the inverse of the diffusion co-
efficient. The inverse of our estimated diffusion coefficients would
match only the shallowest end of the measured exponents. Perhaps
the shallower exponent measured for the Cupid/Belinda crossing
time (∼−3) compared to the Cressida/Desdemona pair (∼−4, see
table 5 of French & Showalter 2012) can be attributed to a more
important role for two-body resonances in that pair.

For moon masses higher than those used in the integration studied
here, the two-body resonances would be even more important as the
system would be more likely to be found in a two-body resonance.
We guess that for higher moon masses crossing time-scales would
be less strongly dependent on moon mass (and have a shallower
exponent) but this is opposite to what was found (see fig. 5 of
French & Showalter 2012). As the moons wander in semimajor
axis, the strengths of the three-body resonances vary with proximity
to first-order resonances. The size of variations in orbital elements
and the time between variations could depend on proximity to first-
order resonances. In such a setting, diffusion could be anomalous
rather than ordinary. We find that simple diffusion estimates based
on three-body resonances fail to predict the numerically observed
crossing times or trends seen in them.

7.3 Resonance overlap for two first-order mean-motion
resonances between two pairs of bodies

The canonical transformation (equations 85 and 87) contains di-
visors φ̇p and φ̇q that could be small. The transformation is no
longer a near-identity transformation when the angles φ̇p and φ̇q

do not circulate. We consider again the Hamiltonian in equation
(89), containing two first-order resonant terms for two pairs of bod-
ies, but now use a different canonical transformation lacking any
small divisors. We first expand near-constant values of mean mo-
tion � = �0 + y where �0 gives semimajor axes ai0, aj0, ak0. The
Hamiltonian (equation 89) becomes

K( y,�; λ, γ ) =
∑

l=i,j ,k

[
nlyl − 3y2

l

2mla
2
l0

+ Bl	l

]

+ εp	
1/2
j cos(pλj + (1 − p)λk − �j )

+ εq	
1/2
j cos(qλk + (1 − q)λj − �j ), (124)

where the mean motions, nl, correspond to those associated with
semimajor axes ai0, aj0, ak0. We use a generating function that is a
function of old angles and new momenta

F2(Ji, Jj , J , 	′
j , λi, λj , λk, γj ) = 	′

j (pλj + (1 − p)λi − �j )

+ J ((p − 1)λi − (p − 1 + q)λj

+ qλl) + Jiλi + Jjλj . (125)

The canonical transformation gives relations between new and old
coordinates

yi = (	′
j − J )(1 − p) + Ji

yj = 	′
jp − (p − 1 + q)J + Jj

yk = Jq

φp = pλj + (1 − p)λi − �j

θ = (p − 1)λi − (p − 1 + q)λj + qλk

λ′
i = λi

λ′
j = λj

	′
j = 	j . (126)

Here the angle φp is conjugate to the momentum 	j and the Laplace
angle, θ , is conjugate to the momentum J.

The Hamiltonian (equation 124) in the new coordinates
(equation 126) is

K(	j , J , Ji, Jj ; φp, θ, λi, λj )

= A	2
j

2
+ AθJ

2

2
+ bj	j + bθJ + c	jJ

+ εp	
1/2
j cos φp + εq	

1/2
j cos(θ + φp) (127)

and we have neglected 	i, 	k as they are conserved in this restricted
setting. We have dropped the primes from 	j and the mean longi-
tudes as they are not changed by the transformation. Coefficients
are

Aθ = −3

[
(p − 1)2

mia
2
i0

+ (p − 1 + q)2

mja
2
j0

+ q2

mka
2
k0

]

bθ = ni(p − 1) − nj (p − 1 + q) + nkq

c = 3(p − 1)2

mia
2
i0

+ 3p(p − 1 + q)

mja
2
j0

(128)
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Resonant chains and three-body resonances 3983

and A and bj are given in equation (46). Additional constants that
depend on the conserved quantities Ji, Jj have been dropped as they
can be removed by shifting the semimajor axes ai0, aj0, ak0. Here, bθ

gives proximity to the three-body resonance, and bj gives proximity
to the p − 1: p first-order resonance between bodies i, j, as discussed
in Section 5.

Manipulating equation (126)

Ji = yi + (p − 1)	j − (p − 1)yk

q

Jj = yj − p	j + (p − 1 + q)yk

q
. (129)

As the new Hamiltonian (equation 127) is independent of λi, λj, the
momenta Ji, Jj, are conserved quantities. These conserved quantities
relate motions of semimajor axes and the eccentricity of the middle
body. The first conserved quantity implies that motions of the inner
and outer body and the eccentricity of the middle body are coupled.
Adding together

Ji + Jj = yi + yj + yk − 	j (130)

implying that all three bodies can move outwards if the middle body
decreases in eccentricity.

As in Section 5.3, we attempt to approximate the Hamiltonian
(equation 127) so that it resembles the well-studied periodically
forced non-linear pendulum. Assuming a mean value for 	j we
approximate an energy εp = εp	

1/2
j and define an energy ratio

μ = εq/εp. We assume that θ̇ is never zero and that J < 	j. This al-
lows us to neglect the terms proportional to J	j and J2. The resulting
Hamiltonian is

K(	j , J , Ji, Jj ; φp, θ, λi, λj ) = A	2
j

2
+ bj	j + bθJ

+ εp

[
cos φp + μ cos(θ + φp)

]
(131)

and θ̇ = bθ . This Hamiltonian resembles the well-studied periodi-
cally forced non-linear pendulum (e.g. Chirikov 1979; Shevchenko
& Kouprianov 2002) and suggests that the separatrix of the p res-
onance can be chaotic due to forcing by the q resonance term. The
two resonances are separated by the frequency bθ . Recall that the
parameter bθ we used previously to describe distance to a resonant-
chain three-body resonance. Here it sets the distance between the
p and q resonances, each between a different pair of bodies. As θ̇

is the difference between the frequencies of the p and q resonant
angles, it serves as a perturbation frequency in analogy to the forced
pendulum model.

Lyapunov time-scales are estimated in terms of a unitless overlap
ratio, λolp, that is the ratio between the perturbation frequency and
the frequency of small oscillations of the dominant first-order mean-
motion resonance. Here,

λolp = bθ

νp

, (132)

where νp is a characteristic libration frequency typical of the p res-
onance (equation 64). As seen in the Hamiltonian (equation 127)
the relative resonance strengths are set by the ratio εq/εp. While our
canonical transformation (equation 125) was chosen for a dominant
p resonance, if the q resonance is stronger, then we would have cho-
sen its angle to be a coordinate. A similar canonical transformation
would give an overlap parameter that depends on the frequency of
libration in the q resonance, λlop = bθ

νq
, and the relative resonance

strength would be εp/εq.

For resonant chains (pairs of first-order mean-motion resonances)
we list in Table 5 the distances to the three-body resonances (here
serving as the perturbation frequency in the analogy to the forced
pendulum) at the beginning of the integration and the minimum
value measured in the time interval 0 < t < 1012 s. We also list
overlap ratios, λolp, computed from both values of bθ using the
libration frequency of the stronger resonance (that with larger li-
bration frequency). The strength ratio is also listed for each pair of
resonances.

In Table 5, we see that the ratio of resonance strengths for many
of the resonance pairs is of the order of 1, so if the overlap parameter
is in the vicinity of 1/2 the resonances overlap. Most of the resonant
chains are comprised of consecutive pairs: the p: p + 1 resonance
between bodies i, j and q − 1: q resonance between bodies j, k.
However, we list similar values for a few chains where the chain is
comprised of a consecutive resonant pair and the outer and inner
body in resonance (as shown in equations 80 and 81).

Table 5 shows that overlap ratios vary from large to small values.
When λolp > 1 the width of the separatrix and energy perturbation
size scale in the separatrix are exponentially truncated (e.g. see
equations 7 and 8 of Shevchenko & Kouprianov 2002 and Chirikov
1979). In the adiabatic regime, the separatrix width shrinks as it
depends on λ2

olp and the Lyapunov time-scale, in units of the libration
period, is inversely proportional to λolp (Shevchenko 2008). The
Lyapunov time-scale approaches the libration perturbation period
in the intermediate regime λolp ∼ 1/2.

Table 5 shows that the following resonant pairs are in the regime
of λolp ranging from a few to near zero:

(i) Bianca/Cressida 15:16 and Cressida/Desdemona 46:47
(ii) Cressida/Desdemona 46:47 and Desdemona/Portia 12:13
(iii) Desdemona/Juliet 23:24 and Juliet/Portia 23:24
(iv) Desdemona/Juliet 20:21 and Juliet/Rosalind 6:7
(v) Rosalind/Belinda 8:9 and Belinda/Perdita 40:41
(vi) Rosalind/Belinda 9:10 and Belinda/Perdita 45:46
(vii) Rosalind/Cupid 11:12 and Cupid/Belinda 61:62
(viii) Cupid/Belinda 57:58 and Belinda/Perdita 43:44
(ix) Desdemona/Juliet 26:27 and Desdemona/Rosalind 6:7
(x) Rosalind/Perdita 7:8 and Belinda/Perdita 43:44.

The trios in this list are likely to be in a regime where the Lya-
punov time-scale is similar to the perturbation frequency, bθ . The
Lyapunov time-scale is only short when λolp ∼ 1/2, and there it is
of order the resonance libration period. Consequently, we expect
that there are intervals when the Lyapunov time-scale is of order the
resonance libration period, which as shown in Table 3 ranges from
1 to 10 yr. The perturbation sizes caused by the resonance coupling
are a fraction of the energy of the resonances themselves (as the
ratios εq/εp are in the range 0.1–1). Consequently, when the system
is in the p resonance separatrix, we expect large and frequent energy
perturbations.

If the Cressida/Desdemona or Cupid/Belinda pairs were at all
times in the vicinity of a first-order resonance separatrix then they
would display large (of size 0.1 the first-order resonance energy)
and frequent (approximately 10 yr for the Lyapunov time-scale)
perturbations in semimajor axis and eccentricity. However, large
variations in their orbital elements are seen only a few times during
the 30 000 yr shown in Fig. 1. Either the intermittency is due to
overlap of subterms (as discussed in Section 5.3) or these pairs
spend only a small fraction of the integration in the vicinity of their
separatrices.
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7.4 Low-index Laplace angles

We mentioned in Section 6 that we suspected that three-body res-
onances with low indices could be strong because multiples of
zeroth-order interaction terms can contribute to their strength. We
can sum these multiple terms to improve upon our estimate for
their strength. For a low-integer slowly moving Laplace angle, the
Hamiltonian (equation 77)

H (�, λ) = −
∑

l=1,2,3

m3
l

2�2
l

+
umax∑
u=1

εup,uq cos(u(pλi − (p + q)λj + qλk)) (133)

and we have included multiples of the Laplace angle. After canon-
ical transformation (using equation 100)

H (J , θ ) = Aθ

2
J 2 + bθJ +

umax∑
u=1

εup,uq cos(uθ ). (134)

The resonance strengths εup, uq as estimated from the zeroth-order
interaction terms are independent of u as long as upδij < 1 and
uqδjk < 1 (see equation 23 of Quillen 2011 and equation 22). The
limiting umax is the maximum value of integer u for which these
conditions are met. Using only the lowest integer term, u = 1, the
frequency of small oscillations is

νu=1 = √
Aθεpq . (135)

However, when all terms are included

νumax = √
Aθεpq

√√√√umax∑
u=1

u2

= √
Aθεpq

[
umax(umax − 1)(2umax − 1)

6

]1/2

∼ √
Aθεpqu

3
2
max3−1/2 (136)

using the formula for the sum of squares
∑n

i=1 i2 = n(n − 1)
(2n − 1)/6.

Libration frequencies computed using a sum of indices are listed
in Table 6 for a series of low-index Laplace resonances identified in
our search for nearby three-body resonances (in Section 6). Table 6
contains distances to resonances, as computed for Table 5, along
with umax, the largest integer that satisfies upδij < 1 and uqδjk < 1.
The table also lists the ratio of νmax to νu = 1 that is computed solely
from the lowest multiple.

We can see from Table 6 that there are times when trios of bodies
are within the vicinity of low-index Laplace resonances (e.g. the
3:-20:17 for Rosalind, Cupid and Belinda) and that the libration
frequencies are in some cases comparable to the fastest resonant
chain libration frequencies listed in Table 5. Our suspicion that
the low-index Laplace resonances could be comparatively strong
(based on structure present in their angle histograms) is supported.

8 SU M M A RY A N D D I S C U S S I O N

By examining a numerical integration by French & Showalter
(2012), we probed the resonant mechanisms responsible for the
chaotic evolution of the inner moons in the Uranian satellite sys-
tem. We have identified strong first-order mean-motion resonances
between pairs of moons and estimated their characteristic libra-
tion frequencies using a perturbative nearly Keplerian Hamiltonian

model for systems with multiple massive bodies. Using histograms
of slow-moving three-body resonant angles, we have found trios of
bodies exhibiting coupled motions when three-body angles freeze.
We find that histograms of three-body Laplace angles tend to show
structure if the angle is also a resonant chain (equal to the dif-
ference between two first-order resonant angles between two pairs
of moons). Histograms of low-integer three-body Laplace angles
also sometimes show structure. The strongest three-body resonance
identified is the 46:-57:13 between Cressida, Desdemona and Por-
tia, which is also near the 46:47 first-order mean-motion resonance
between Cressida and Desdemona and the 12:13 first-order mean-
motion resonance between Desdemona and Portia. Coupled motions
between Cressida, Desdemona and Portia tend to take place when
the three-body Laplace angle makes a transition from 0 to π or vice
versa.

Using a near-identity canonical transformation, we estimated the
strength of three-body resonances that are also resonant chains.
We found that in some cases the three-body resonance libration
frequencies are only one to two orders of magnitude smaller than
those of first-order resonances. As gravitational interaction terms
only involve two bodies, three-body resonance strengths are sec-
ond order in perturbation strength (and so a higher power of moon
mass). Because they are sensitive to the separation between bod-
ies and the distance to a first-order resonance (serving as a small
divisor) and are independent of eccentricity, they can be nearly as
strong as first-order mean-motion resonances. We calculated that
low-integer three-body Laplace resonances can have similar-sized
libration frequencies, with resonance strength due to the contri-
bution of many multiples of the three-body angles arising from
zeroth-order terms in the disturbing function. For any trio of three
closely spaced bodies, we estimated the strength of the three-body
resonance associated with the nearest resonance chain. We esti-
mated associated semimajor axis variations and found them similar
in size to the ubiquitous small variations seen in our simulation.
This suggests that the small coupled variations in semimajor axis,
seen throughout the simulation, are due to ubiquitous and weak
three-body resonant couplings.

Using a canonical transformation without any small divisor, we
considered the resonant chain setting where consecutive pairs of
bodies are in two first-order resonances. The transformed Hamilto-
nian resembles the well-studied forced pendulum model but with
the distance to three-body resonance (equivalently the time deriva-
tive of the Laplace angle) serving as a perturbation frequency that
describes an overlap between the two resonances. We identified
trios of bodies and associated pairs of first-order resonances that are
in a regime where short Lyapunov times (of order a few times the
resonance libration periods) are predicted. When a pair of bodies
is in the resonance separatrix, it can experience frequent (on the
Lyapunov time-scale) and large (approximately 0.1 the energy of
the larger resonance) perturbations due to the resonance between
the other pair of bodies. If the system spends long intervals in a
resonance separatrix, then the system could exhibit large jumps in
orbital elements every libration period (or every few years for the
Uranian satellites). However, the resonant angles associated with the
first-order resonances for Cupid/Belinda and Cressida/Desdemona
instead exhibit behaviour that we might better describe as inter-
mittent, experiencing large jumps in orbital elements only a few
times during the first 30 000 yr of the simulation. Subterms in each
individual resonance are likely to be in an adiabatic regime and
could account for the intermittency. Alternatively, if perturbations
from a first-order resonance with a third body are responsible for
the chaotic behaviour then perhaps the resonant pair spends only a
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Table 6. Low-index Laplace resonances.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
i j k q:-(p+q):q θ̇init θ̇min νumax(Hz) umax

νumax
νu=1

δi δj δk

Cressida Juliet Portia 5:-13:8 6.4e-07 6.0e-07 1.1e-08 5 5.5 4.2e-06 4.9e-06 1.3e-06
Bianca Cressida Juliet 9:-19:10 3.4e-07 2.6e-07 1.4e-09 3 2.2 5.3e-07 3.2e-07 7.5e-08
Bianca Desdemona Juliet 7:-23:16 −1.2e-07 2.6e-07 1.8e-09 3 2.2 3.4e-07 5.0e-07 9.9e-08
Cressida Desdemona Juliet 9:-14:5 −1.9e-07 −9.8e-08 3.4e-08 8 11.8 6.5e-06 1.6e-05 1.6e-06
Cressida Desdemona Portia 7:-9:2 −3.0e-07 −2.4e-07 6.1e-08 10 16.9 2.1e-05 4.2e-05 1.1e-06
Cressida Desdemona Rosalind 7:-8:1 4.9e-08 2.6e-08 2.3e-08 9 14.3 9.0e-06 1.6e-05 1.8e-06
Cressida Juliet Portia 3:-8:5 −7.7e-07 −7.7e-07 1.7e-08 8 11.8 1.1e-05 1.3e-05 3.5e-06
Cressida Juliet Portia 5:-13:8 6.4e-07 6.0e-07 1.1e-08 5 5.5 4.2e-06 4.9e-06 1.3e-06
Cressida Juliet Portia 8:-21:13 −1.3e-07 −1.2e-07 5.5e-09 3 2.2 1.3e-06 1.6e-06 4.2e-07
Cressida Juliet Rosalind 11:-17:6 −3.9e-07 −3.7e-07 4.3e-10 2 1.0 1.4e-07 9.8e-08 1.1e-07
Desdemona Juliet Portia 1:-2:1 2.6e-07 2.5e-07 7.4e-08 37 127.3 2.9e-04 1.6e-04 3.5e-05
Desdemona Juliet Rosalind 3:-4:1 8.7e-07 8.5e-07 8.4e-09 12 22.5 1.5e-05 5.9e-06 4.5e-06
Desdemona Portia Rosalind 1:-2:1 3.5e-07 3.4e-07 5.5e-09 18 42.2 2.2e-05 5.3e-06 1.9e-05
Juliet Portia Rosalind 2:-3:1 8.5e-08 8.6e-08 2.1e-08 18 42.2 3.6e-05 2.3e-05 5.5e-05
Juliet Cupid Belinda 1:-15:14 3.3e-07 1.3e-07 5.8e-08 7 9.5 1.5e-08 4.4e-05 3.2e-07
Portia Rosalind Belinda 6:-11: 5 9.7e-07 9.6e-07 1.2e-09 3 2.2 7.3e-08 9.6e-07 2.2e-07
Portia Cupid Belinda 1:-12:11 6.5e-07 4.9e-07 8.6e-08 8 11.8 1.5e-08 8.0e-05 5.9e-07
Rosalind Cupid Perdita 2:-7:5 −3.2e-07 −2.9e-07 7.3e-10 8 11.8 4.6e-09 1.0e-06 2.4e-07
Rosalind Cupid Perdita 6:-21:15 −9.6e-07 −8.6e-07 2.3e-10 3 2.2 5.0e-10 1.1e-07 2.5e-08
Rosalind Cupid Belinda 1:-7:6 −6.6e-07 −6.4e-07 4.7e-08 15 31.9 1.7e-07 7.6e-05 5.2e-07
Rosalind Cupid Belinda 2:-13:11 7.2e-07 5.4e-07 2.5e-08 8 11.8 5.2e-08 2.1e-05 1.4e-07
Rosalind Cupid Belinda 3:-20:17 5.6e-08 2.8e-11 2.0e-08 6 7.4 2.7e-08 1.1e-05 7.5e-08
Rosalind Cupid Belinda 4:-27:23 −6.0e-07 −5.3e-07 1.1e-08 4 3.7 1.1e-08 4.8e-06 3.2e-08
Rosalind Belinda Perdita 1:-6:5 3.4e-07 3.0e-07 1.8e-08 13 25.5 3.9e-07 1.2e-06 4.0e-05
Rosalind Belinda Perdita 7:-43:36 −2.6e-07 −4.0e-09 1.7e-09 2 1.0 5.1e-09 1.6e-08 5.4e-07
Cupid Belinda Perdita 13:-23:10 −3.3e-08 8.8e-10 3.3e-09 7 9.5 2.3e-06 3.3e-08 5.9e-07

Columns 1–3. The three bodies considered. Column 4. A three-body angle θ = pλi − (p + q) λj + λk is defined with integers p,-(p+q),q. Column
5. Distance to three-body resonance, θ̇ , at the start of the numerical integration in Hz. Column 6. Minimum distance to three-body resonance, θ̇ ,
for t < 1012 s in Hz. Column 7. Libration frequency in Hz of the three-body resonance. Here νumax refers to the libration frequency computed with
equation (136). Column 8. The maximum index umax. Column 9. The ratio of libration frequency computed from a sum of indices to that only using
the lowest one νumax/νu = 1. Columns 10–12. Sizes of variations in semimajor axis caused by the three-body resonance (equations 108 and 110).

small fraction of time in the vicinity of its separatrix and this could
account for the intermittency.

Quillen (2011) argued, based on the relatively small number
of two-body resonances compared to three-body resonances (and
this was also emphasized by Nesvorný & Morbidelli 1998a), that a
closely spaced multiple-planet system is unlikely to be unstable due
to two-body resonances alone. However, Quillen (2011) estimated
three-body resonance strengths using only zeroth-order terms and
did not consider systems near or in two-body resonance. Here we
find that the strongest three-body resonances are resonant chains
and are near a pair of two-body resonances. The higher strength of
these resonances may alleviate some of the discrepancy between the
predicted and numerically measured three-body resonance strengths
of Quillen (2011).

We found that the strengths of three-body Laplace resonances
associated with a resonant chain are dependent on small divisors.
As the moons wander in semimajor axis, the strengths of these three-
body resonances vary with proximity to first-order resonances. For
the overlapping two-body resonances, strong variations are likely
only if one of the pairs of bodies is in the vicinity of its separatrix.
In such a setting, the size of variations in orbital elements and the
time between variations could depend on proximity to first-order
resonances, and diffusion can be anomalous (an associated random
walk could be called a Lévy flight). Although we have estimated
the strengths of three-body resonances and Lyapunov time-scales
for overlapping pairs of first-order resonances, we have tried but

failed to account for power-law relations measured for crossing
time-scales. If the diffusion really is anomalous then it will be
challenging to develop a theoretical framework that can match the
exponents measured numerically for crossing times.

In this study, we have neglected secular resonances as well as
three-body resonances that involve a longitude of pericentre of one
of the bodies (such as 12λDes − 49λJul + 38λPor − � Jul that might be
related to the 49:51 second-order mean-motion resonance between
Juliet and Portia). We have also neglected the possibility that a
heavily overlapped system (one with a near-zero overlap parameter),
in the adiabatic chaos regime described by Shevchenko (2008) (and
so near a periodic orbit), might be integrable or stable (Lochak
1993) rather than chaotic. Chaotic behaviour in this study has been
crudely estimated via analogy to the periodically forced pendulum.
However, exploration of Hamiltonian models containing only a
few Fourier components could be used to better understand the
diffusive behaviour. Despite our ability to estimate two- and three-
body resonance strengths, we lack a mechanism accounting for the
power-law relations in numerically measured crossing time-scales
in compact planar multiple-body systems.

We compare the role of three-body interactions in the inner Ura-
nian satellite to those in the asteroid belt (e.g. Murray et al. 1998;
Nesvorný & Morbidelli 1998a,b). In the asteroid belt, the distance
(as a ratio in semimajor axis) between bodies (asteroid and Saturn,
asteroid and Jupiter, and Saturn and Jupiter) is much larger (� ∼
0.5) than the distances between bodies in the inner Uranian satellite
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system (� ∼ 0.02). The exponential decay of Laplace coefficients
with resonance index depends on the semimajor axis ratio of two
bodies. In the asteroid belt, the exponential decay with resonance
index makes the high-index resonances weak. In contrast in the in-
ner Uranian satellite the proximity of the bodies allows high-index
(but low-order) resonances to influence the dynamics.

Three-body resonance strengths are second order in planet mass.
Saturn and Jupiter have mass ratios that are approximately 105

times larger than the inner Uranian satellite mass ratios. Because
of higher body masses three-body resonances that are comprised
of second-order terms in eccentricity can be strong in the asteroid
belt. This perhaps explains why three-body resonances associated
with Laplace angles that include a longitude of perihelion can be
important. For example, that associated with the angle 5λJ − 2λS

− λ − � with λJ and λS the mean longitude of Jupiter and Saturn
(see Fig. 1 for asteroid 490 Veritas by Nesvorný & Morbidelli
1998b). Because the masses and eccentricities are not low, chaos
can arise from overlap of multiplets in these resonances (Nesvorný
& Morbidelli 1998a; Murray et al. 1998). We compare this to the
Uranian satellite system where the masses and eccentricities are so
low that either proximity to a first-order resonance or a low-index
Laplace angle gives a strong three-body resonance. In this setting
overlap of first order but high-index mean-motion resonances in
pairs of bodies and weak three-body resonances contribute to the
chaotic behaviour.
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I., Orlov V., eds, ASP Conf. Ser. Vol. 316, Order and Chaos in Stellar
and Planetary Systems. Astron. Soc. Pac., San Francisco, p. 20

Shevchenko I. I., 2008, MNRAS, 384, 1211
Shevchenko I. I., 2010, Phys. Rev. E, 81, 066216
Shevchenko I. I., 2014, Phys. Lett. A, 378, 34
Shevchenko I. I., Kouprianov V. V., 2002, A&A, 394, 663
Showalter M. R., Lissauer J. J., 2006, Science, 311, 973
Showalter M. R., Lissauer J. J., French R. G., Hamilton D. P., Nicholson

P. D., de Pater I., Dawson R., 2008, BAAS, 40, 431
Showalter M. R., Dawson R., French R. G., 2010, BAAS, 41, 937
Smirnov E. A., Shevchenko I. I., 2013, Icarus, 222, 220
Smith A. W., Lissauer J. J., 2009, Icarus, 201, 381
Smith B. A. et al., 1986, Science, 233, 43
Wisdom J., 1980, AJ, 85, 1122
Wisdom J., Holman M., Touma J., 1996, Fields Inst. Commun., 10, 217
Zhou J.-L., Lin D. N. C., Sun Y.-S., 2007, ApJ, 666, 423

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 445, 3959–3986 (2014)

 at U
niversity of R

ochester on N
ovem

ber 11, 2014
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/

